ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onin Unicode version

Theorem onin 4149
Description: The intersection of two ordinal numbers is an ordinal number. (Contributed by NM, 7-Apr-1995.)
Assertion
Ref Expression
onin  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  i^i  B
)  e.  On )

Proof of Theorem onin
StepHypRef Expression
1 eloni 4138 . . 3  |-  ( A  e.  On  ->  Ord  A )
2 eloni 4138 . . 3  |-  ( B  e.  On  ->  Ord  B )
3 ordin 4148 . . 3  |-  ( ( Ord  A  /\  Ord  B )  ->  Ord  ( A  i^i  B ) )
41, 2, 3syl2an 283 . 2  |-  ( ( A  e.  On  /\  B  e.  On )  ->  Ord  ( A  i^i  B ) )
5 simpl 107 . . 3  |-  ( ( A  e.  On  /\  B  e.  On )  ->  A  e.  On )
6 inex1g 3922 . . 3  |-  ( A  e.  On  ->  ( A  i^i  B )  e. 
_V )
7 elong 4136 . . 3  |-  ( ( A  i^i  B )  e.  _V  ->  (
( A  i^i  B
)  e.  On  <->  Ord  ( A  i^i  B ) ) )
85, 6, 73syl 17 . 2  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( ( A  i^i  B )  e.  On  <->  Ord  ( A  i^i  B ) ) )
94, 8mpbird 165 1  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  i^i  B
)  e.  On )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    e. wcel 1434   _Vcvv 2602    i^i cin 2973   Ord word 4125   Oncon0 4126
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3904
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1687  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ral 2354  df-rex 2355  df-v 2604  df-in 2980  df-ss 2987  df-uni 3610  df-tr 3884  df-iord 4129  df-on 4131
This theorem is referenced by:  tfrlem5  5963
  Copyright terms: Public domain W3C validator