ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onprc Unicode version

Theorem onprc 4462
Description: No set contains all ordinal numbers. Proposition 7.13 of [TakeutiZaring] p. 38. This is also known as the Burali-Forti paradox (remark in [Enderton] p. 194). In 1897, Cesare Burali-Forti noticed that since the "set" of all ordinal numbers is an ordinal class (ordon 4397), it must be both an element of the set of all ordinal numbers yet greater than every such element. ZF set theory resolves this paradox by not allowing the class of all ordinal numbers to be a set (so instead it is a proper class). Here we prove the denial of its existence. (Contributed by NM, 18-May-1994.)
Assertion
Ref Expression
onprc  |-  -.  On  e.  _V

Proof of Theorem onprc
StepHypRef Expression
1 ordon 4397 . . 3  |-  Ord  On
2 ordirr 4452 . . 3  |-  ( Ord 
On  ->  -.  On  e.  On )
31, 2ax-mp 5 . 2  |-  -.  On  e.  On
4 elong 4290 . . 3  |-  ( On  e.  _V  ->  ( On  e.  On  <->  Ord  On ) )
51, 4mpbiri 167 . 2  |-  ( On  e.  _V  ->  On  e.  On )
63, 5mto 651 1  |-  -.  On  e.  _V
Colors of variables: wff set class
Syntax hints:   -. wn 3    e. wcel 1480   _Vcvv 2681   Ord word 4279   Oncon0 4280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-setind 4447
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-ral 2419  df-rex 2420  df-v 2683  df-dif 3068  df-in 3072  df-ss 3079  df-sn 3528  df-uni 3732  df-tr 4022  df-iord 4283  df-on 4285
This theorem is referenced by:  sucon  4463
  Copyright terms: Public domain W3C validator