ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onsucssi Unicode version

Theorem onsucssi 4278
Description: A set belongs to an ordinal number iff its successor is a subset of the ordinal number. Exercise 8 of [TakeutiZaring] p. 42 and its converse. (Contributed by NM, 16-Sep-1995.)
Hypotheses
Ref Expression
onsucssi.1  |-  A  e.  On
onsucssi.2  |-  B  e.  On
Assertion
Ref Expression
onsucssi  |-  ( A  e.  B  <->  suc  A  C_  B )

Proof of Theorem onsucssi
StepHypRef Expression
1 onsucssi.1 . 2  |-  A  e.  On
2 onsucssi.2 . . 3  |-  B  e.  On
32onordi 4209 . 2  |-  Ord  B
4 ordelsuc 4277 . 2  |-  ( ( A  e.  On  /\  Ord  B )  ->  ( A  e.  B  <->  suc  A  C_  B ) )
51, 3, 4mp2an 417 1  |-  ( A  e.  B  <->  suc  A  C_  B )
Colors of variables: wff set class
Syntax hints:    <-> wb 103    e. wcel 1434    C_ wss 2982   Ord word 4145   Oncon0 4146   suc csuc 4148
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065
This theorem depends on definitions:  df-bi 115  df-tru 1288  df-nf 1391  df-sb 1688  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ral 2358  df-rex 2359  df-v 2612  df-un 2986  df-in 2988  df-ss 2995  df-sn 3422  df-uni 3622  df-tr 3896  df-iord 4149  df-on 4151  df-suc 4154
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator