ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onsucsssucexmid Unicode version

Theorem onsucsssucexmid 4278
Description: The converse of onsucsssucr 4261 implies excluded middle. (Contributed by Mario Carneiro and Jim Kingdon, 29-Jul-2019.)
Hypothesis
Ref Expression
onsucsssucexmid.1  |-  A. x  e.  On  A. y  e.  On  ( x  C_  y  ->  suc  x  C_  suc  y )
Assertion
Ref Expression
onsucsssucexmid  |-  ( ph  \/  -.  ph )
Distinct variable groups:    ph, x    x, y
Allowed substitution hint:    ph( y)

Proof of Theorem onsucsssucexmid
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 ssrab2 3080 . . . . . 6  |-  { z  e.  { (/) }  |  ph }  C_  { (/) }
2 ordtriexmidlem 4271 . . . . . . 7  |-  { z  e.  { (/) }  |  ph }  e.  On
3 sseq1 3021 . . . . . . . . 9  |-  ( x  =  { z  e. 
{ (/) }  |  ph }  ->  ( x  C_  {
(/) }  <->  { z  e.  { (/)
}  |  ph }  C_ 
{ (/) } ) )
4 suceq 4165 . . . . . . . . . 10  |-  ( x  =  { z  e. 
{ (/) }  |  ph }  ->  suc  x  =  suc  { z  e.  { (/)
}  |  ph }
)
54sseq1d 3027 . . . . . . . . 9  |-  ( x  =  { z  e. 
{ (/) }  |  ph }  ->  ( suc  x  C_ 
suc  { (/) }  <->  suc  { z  e.  { (/) }  |  ph }  C_  suc  { (/) } ) )
63, 5imbi12d 232 . . . . . . . 8  |-  ( x  =  { z  e. 
{ (/) }  |  ph }  ->  ( ( x 
C_  { (/) }  ->  suc  x  C_  suc  { (/) } )  <->  ( { z  e.  { (/) }  |  ph }  C_  { (/) }  ->  suc 
{ z  e.  { (/)
}  |  ph }  C_ 
suc  { (/) } ) ) )
7 suc0 4174 . . . . . . . . . 10  |-  suc  (/)  =  { (/)
}
8 0elon 4155 . . . . . . . . . . 11  |-  (/)  e.  On
98onsuci 4268 . . . . . . . . . 10  |-  suc  (/)  e.  On
107, 9eqeltrri 2153 . . . . . . . . 9  |-  { (/) }  e.  On
11 p0ex 3967 . . . . . . . . . 10  |-  { (/) }  e.  _V
12 eleq1 2142 . . . . . . . . . . . 12  |-  ( y  =  { (/) }  ->  ( y  e.  On  <->  { (/) }  e.  On ) )
1312anbi2d 452 . . . . . . . . . . 11  |-  ( y  =  { (/) }  ->  ( ( x  e.  On  /\  y  e.  On )  <-> 
( x  e.  On  /\ 
{ (/) }  e.  On ) ) )
14 sseq2 3022 . . . . . . . . . . . 12  |-  ( y  =  { (/) }  ->  ( x  C_  y  <->  x  C_  { (/) } ) )
15 suceq 4165 . . . . . . . . . . . . 13  |-  ( y  =  { (/) }  ->  suc  y  =  suc  { (/)
} )
1615sseq2d 3028 . . . . . . . . . . . 12  |-  ( y  =  { (/) }  ->  ( suc  x  C_  suc  y 
<->  suc  x  C_  suc  {
(/) } ) )
1714, 16imbi12d 232 . . . . . . . . . . 11  |-  ( y  =  { (/) }  ->  ( ( x  C_  y  ->  suc  x  C_  suc  y )  <->  ( x  C_ 
{ (/) }  ->  suc  x  C_  suc  { (/) } ) ) )
1813, 17imbi12d 232 . . . . . . . . . 10  |-  ( y  =  { (/) }  ->  ( ( ( x  e.  On  /\  y  e.  On )  ->  (
x  C_  y  ->  suc  x  C_  suc  y ) )  <->  ( ( x  e.  On  /\  { (/)
}  e.  On )  ->  ( x  C_  {
(/) }  ->  suc  x  C_ 
suc  { (/) } ) ) ) )
19 onsucsssucexmid.1 . . . . . . . . . . 11  |-  A. x  e.  On  A. y  e.  On  ( x  C_  y  ->  suc  x  C_  suc  y )
2019rspec2 2451 . . . . . . . . . 10  |-  ( ( x  e.  On  /\  y  e.  On )  ->  ( x  C_  y  ->  suc  x  C_  suc  y ) )
2111, 18, 20vtocl 2654 . . . . . . . . 9  |-  ( ( x  e.  On  /\  {
(/) }  e.  On )  ->  ( x  C_  {
(/) }  ->  suc  x  C_ 
suc  { (/) } ) )
2210, 21mpan2 416 . . . . . . . 8  |-  ( x  e.  On  ->  (
x  C_  { (/) }  ->  suc  x  C_  suc  { (/) } ) )
236, 22vtoclga 2665 . . . . . . 7  |-  ( { z  e.  { (/) }  |  ph }  e.  On  ->  ( { z  e.  { (/) }  |  ph }  C_  { (/) }  ->  suc 
{ z  e.  { (/)
}  |  ph }  C_ 
suc  { (/) } ) )
242, 23ax-mp 7 . . . . . 6  |-  ( { z  e.  { (/) }  |  ph }  C_  {
(/) }  ->  suc  {
z  e.  { (/) }  |  ph }  C_  suc  { (/) } )
251, 24ax-mp 7 . . . . 5  |-  suc  {
z  e.  { (/) }  |  ph }  C_  suc  { (/) }
2610onsuci 4268 . . . . . . 7  |-  suc  { (/)
}  e.  On
2726onordi 4189 . . . . . 6  |-  Ord  suc  {
(/) }
28 ordelsuc 4257 . . . . . 6  |-  ( ( { z  e.  { (/)
}  |  ph }  e.  On  /\  Ord  suc  {
(/) } )  ->  ( { z  e.  { (/)
}  |  ph }  e.  suc  { (/) }  <->  suc  { z  e.  { (/) }  |  ph }  C_  suc  { (/) } ) )
292, 27, 28mp2an 417 . . . . 5  |-  ( { z  e.  { (/) }  |  ph }  e.  suc  { (/) }  <->  suc  { z  e.  { (/) }  |  ph }  C_  suc  { (/) } )
3025, 29mpbir 144 . . . 4  |-  { z  e.  { (/) }  |  ph }  e.  suc  { (/)
}
31 elsucg 4167 . . . . 5  |-  ( { z  e.  { (/) }  |  ph }  e.  On  ->  ( { z  e.  { (/) }  |  ph }  e.  suc  { (/)
}  <->  ( { z  e.  { (/) }  |  ph }  e.  { (/) }  \/  { z  e. 
{ (/) }  |  ph }  =  { (/) } ) ) )
322, 31ax-mp 7 . . . 4  |-  ( { z  e.  { (/) }  |  ph }  e.  suc  { (/) }  <->  ( {
z  e.  { (/) }  |  ph }  e.  {
(/) }  \/  { z  e.  { (/) }  |  ph }  =  { (/) } ) )
3330, 32mpbi 143 . . 3  |-  ( { z  e.  { (/) }  |  ph }  e.  {
(/) }  \/  { z  e.  { (/) }  |  ph }  =  { (/) } )
34 elsni 3424 . . . . 5  |-  ( { z  e.  { (/) }  |  ph }  e.  {
(/) }  ->  { z  e.  { (/) }  |  ph }  =  (/) )
35 ordtriexmidlem2 4272 . . . . 5  |-  ( { z  e.  { (/) }  |  ph }  =  (/) 
->  -.  ph )
3634, 35syl 14 . . . 4  |-  ( { z  e.  { (/) }  |  ph }  e.  {
(/) }  ->  -.  ph )
37 0ex 3913 . . . . 5  |-  (/)  e.  _V
38 biidd 170 . . . . 5  |-  ( z  =  (/)  ->  ( ph  <->  ph ) )
3937, 38rabsnt 3475 . . . 4  |-  ( { z  e.  { (/) }  |  ph }  =  { (/) }  ->  ph )
4036, 39orim12i 709 . . 3  |-  ( ( { z  e.  { (/)
}  |  ph }  e.  { (/) }  \/  {
z  e.  { (/) }  |  ph }  =  { (/) } )  -> 
( -.  ph  \/  ph ) )
4133, 40ax-mp 7 . 2  |-  ( -. 
ph  \/  ph )
42 orcom 680 . 2  |-  ( ( -.  ph  \/  ph )  <->  (
ph  \/  -.  ph )
)
4341, 42mpbi 143 1  |-  ( ph  \/  -.  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    <-> wb 103    \/ wo 662    = wceq 1285    e. wcel 1434   A.wral 2349   {crab 2353    C_ wss 2974   (/)c0 3258   {csn 3406   Ord word 4125   Oncon0 4126   suc csuc 4128
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3904  ax-nul 3912  ax-pow 3956  ax-pr 3972  ax-un 4196
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1687  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ral 2354  df-rex 2355  df-rab 2358  df-v 2604  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-nul 3259  df-pw 3392  df-sn 3412  df-pr 3413  df-uni 3610  df-tr 3884  df-iord 4129  df-on 4131  df-suc 4134
This theorem is referenced by:  oawordriexmid  6114
  Copyright terms: Public domain W3C validator