![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > opabbii | Unicode version |
Description: Equivalent wff's yield equal class abstractions. (Contributed by NM, 15-May-1995.) |
Ref | Expression |
---|---|
opabbii.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
opabbii |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2082 |
. 2
![]() ![]() ![]() ![]() | |
2 | opabbii.1 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 2 | a1i 9 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3 | opabbidv 3852 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 1, 4 | ax-mp 7 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-11 1438 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 |
This theorem depends on definitions: df-bi 115 df-tru 1288 df-nf 1391 df-sb 1687 df-clab 2069 df-cleq 2075 df-opab 3848 |
This theorem is referenced by: mptv 3882 fconstmpt 4413 xpundi 4422 xpundir 4423 inxp 4498 cnvco 4548 resopab 4682 opabresid 4689 cnvi 4758 cnvun 4759 cnvin 4761 cnvxp 4772 cnvcnv3 4800 coundi 4852 coundir 4853 mptun 5060 fvopab6 5296 cbvoprab1 5607 cbvoprab12 5609 dmoprabss 5617 mpt2mptx 5626 resoprab 5628 ov6g 5669 dfoprab3s 5847 dfoprab3 5848 dfoprab4 5849 xpcomco 6370 dmaddpq 6631 dmmulpq 6632 recmulnqg 6643 enq0enq 6683 ltrelxr 7240 ltxr 8927 shftidt2 9858 |
Copyright terms: Public domain | W3C validator |