ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opelco2g Unicode version

Theorem opelco2g 4531
Description: Ordered pair membership in a composition. (Contributed by NM, 27-Jan-1997.) (Revised by Mario Carneiro, 24-Feb-2015.)
Assertion
Ref Expression
opelco2g  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( <. A ,  B >.  e.  ( C  o.  D )  <->  E. x
( <. A ,  x >.  e.  D  /\  <. x ,  B >.  e.  C
) ) )
Distinct variable groups:    x, A    x, B    x, C    x, D
Allowed substitution hints:    V( x)    W( x)

Proof of Theorem opelco2g
StepHypRef Expression
1 brcog 4530 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A ( C  o.  D ) B  <->  E. x ( A D x  /\  x C B ) ) )
2 df-br 3794 . 2  |-  ( A ( C  o.  D
) B  <->  <. A ,  B >.  e.  ( C  o.  D ) )
3 df-br 3794 . . . 4  |-  ( A D x  <->  <. A ,  x >.  e.  D )
4 df-br 3794 . . . 4  |-  ( x C B  <->  <. x ,  B >.  e.  C
)
53, 4anbi12i 448 . . 3  |-  ( ( A D x  /\  x C B )  <->  ( <. A ,  x >.  e.  D  /\  <. x ,  B >.  e.  C ) )
65exbii 1537 . 2  |-  ( E. x ( A D x  /\  x C B )  <->  E. x
( <. A ,  x >.  e.  D  /\  <. x ,  B >.  e.  C
) )
71, 2, 63bitr3g 220 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( <. A ,  B >.  e.  ( C  o.  D )  <->  E. x
( <. A ,  x >.  e.  D  /\  <. x ,  B >.  e.  C
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103   E.wex 1422    e. wcel 1434   <.cop 3409   class class class wbr 3793    o. ccom 4375
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3904  ax-pow 3956  ax-pr 3972
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-v 2604  df-un 2978  df-in 2980  df-ss 2987  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-br 3794  df-opab 3848  df-co 4380
This theorem is referenced by:  dfco2  4850  dmfco  5273
  Copyright terms: Public domain W3C validator