ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opelresi Unicode version

Theorem opelresi 4651
Description:  <. A ,  A >. belongs to a restriction of the identity class iff  A belongs to the restricting class. (Contributed by FL, 27-Oct-2008.) (Revised by NM, 30-Mar-2016.)
Assertion
Ref Expression
opelresi  |-  ( A  e.  V  ->  ( <. A ,  A >.  e.  (  _I  |`  B )  <-> 
A  e.  B ) )

Proof of Theorem opelresi
StepHypRef Expression
1 opelresg 4647 . 2  |-  ( A  e.  V  ->  ( <. A ,  A >.  e.  (  _I  |`  B )  <-> 
( <. A ,  A >.  e.  _I  /\  A  e.  B ) ) )
2 ididg 4517 . . . 4  |-  ( A  e.  V  ->  A  _I  A )
3 df-br 3794 . . . 4  |-  ( A  _I  A  <->  <. A ,  A >.  e.  _I  )
42, 3sylib 120 . . 3  |-  ( A  e.  V  ->  <. A ,  A >.  e.  _I  )
54biantrurd 299 . 2  |-  ( A  e.  V  ->  ( A  e.  B  <->  ( <. A ,  A >.  e.  _I  /\  A  e.  B
) ) )
61, 5bitr4d 189 1  |-  ( A  e.  V  ->  ( <. A ,  A >.  e.  (  _I  |`  B )  <-> 
A  e.  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    e. wcel 1434   <.cop 3409   class class class wbr 3793    _I cid 4051    |` cres 4373
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3904  ax-pow 3956  ax-pr 3972
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ral 2354  df-rex 2355  df-v 2604  df-un 2978  df-in 2980  df-ss 2987  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-br 3794  df-opab 3848  df-id 4056  df-xp 4377  df-rel 4378  df-res 4383
This theorem is referenced by:  issref  4737
  Copyright terms: Public domain W3C validator