![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > opeq12 | Unicode version |
Description: Equality theorem for ordered pairs. (Contributed by NM, 28-May-1995.) |
Ref | Expression |
---|---|
opeq12 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq1 3590 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | opeq2 3591 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | sylan9eq 2135 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-nf 1391 df-sb 1688 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-v 2612 df-un 2986 df-sn 3422 df-pr 3423 df-op 3425 |
This theorem is referenced by: opeq12i 3595 opeq12d 3598 cbvopab 3869 opth 4020 copsex2t 4028 copsex2g 4029 relop 4534 funopg 4984 fsn 5388 fnressn 5402 cbvoprab12 5630 eqopi 5850 f1o2ndf1 5901 tposoprab 5950 brecop 6284 th3q 6299 ecovcom 6301 ecovicom 6302 ecovass 6303 ecoviass 6304 ecovdi 6305 ecovidi 6306 xpf1o 6407 1qec 6710 enq0sym 6754 addnq0mo 6769 mulnq0mo 6770 addnnnq0 6771 mulnnnq0 6772 distrnq0 6781 mulcomnq0 6782 addassnq0 6784 addsrmo 7052 mulsrmo 7053 addsrpr 7054 mulsrpr 7055 axcnre 7179 eucalgval2 10660 |
Copyright terms: Public domain | W3C validator |