![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > opeq1d | Unicode version |
Description: Equality deduction for ordered pairs. (Contributed by NM, 16-Dec-2006.) |
Ref | Expression |
---|---|
opeq1d.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
opeq1d |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq1d.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | opeq1 3572 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl 14 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-nf 1391 df-sb 1687 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-v 2604 df-un 2978 df-sn 3406 df-pr 3407 df-op 3409 |
This theorem is referenced by: oteq1 3581 oteq2 3582 opth 3994 cbvoprab2 5602 dfplpq2 6595 ltexnqq 6649 nnanq0 6699 addpinq1 6705 prarloclemlo 6735 prarloclem3 6738 prarloclem5 6741 prsrriota 7015 caucvgsrlemfv 7018 caucvgsr 7029 pitonnlem2 7066 pitonn 7067 recidpirq 7077 ax1rid 7094 axrnegex 7096 nntopi 7111 axcaucvglemval 7114 fseq1m1p1 9177 frecuzrdglem 9482 frecuzrdgg 9487 frecuzrdgdomlem 9488 frecuzrdgfunlem 9490 frecuzrdgsuctlem 9494 |
Copyright terms: Public domain | W3C validator |