Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  oprabbidv Unicode version

Theorem oprabbidv 5590
 Description: Equivalent wff's yield equal operation class abstractions (deduction rule). (Contributed by NM, 21-Feb-2004.)
Hypothesis
Ref Expression
oprabbidv.1
Assertion
Ref Expression
oprabbidv
Distinct variable groups:   ,,   ,,
Allowed substitution hints:   (,,)   (,,)

Proof of Theorem oprabbidv
StepHypRef Expression
1 nfv 1462 . 2
2 nfv 1462 . 2
3 nfv 1462 . 2
4 oprabbidv.1 . 2
51, 2, 3, 4oprabbid 5589 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 103   wceq 1285  coprab 5544 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-11 1438  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064 This theorem depends on definitions:  df-bi 115  df-tru 1288  df-nf 1391  df-sb 1687  df-clab 2069  df-cleq 2075  df-oprab 5547 This theorem is referenced by:  oprabbii  5591  mpt2eq123dva  5597  mpt2eq3dva  5600  resoprab2  5629  erovlem  6264
 Copyright terms: Public domain W3C validator