ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oprabex3 Unicode version

Theorem oprabex3 5787
Description: Existence of an operation class abstraction (special case). (Contributed by NM, 19-Oct-2004.)
Hypotheses
Ref Expression
oprabex3.1  |-  H  e. 
_V
oprabex3.2  |-  F  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  ( H  X.  H
)  /\  y  e.  ( H  X.  H
) )  /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v
>.  /\  y  =  <. u ,  f >. )  /\  z  =  R
) ) }
Assertion
Ref Expression
oprabex3  |-  F  e. 
_V
Distinct variable groups:    x, y, z, w, v, u, f, H    x, R, y, z
Allowed substitution hints:    R( w, v, u, f)    F( x, y, z, w, v, u, f)

Proof of Theorem oprabex3
StepHypRef Expression
1 oprabex3.1 . . 3  |-  H  e. 
_V
21, 1xpex 4481 . 2  |-  ( H  X.  H )  e. 
_V
3 moeq 2768 . . . . . 6  |-  E* z 
z  =  R
43mosubop 4432 . . . . 5  |-  E* z E. u E. f ( y  =  <. u ,  f >.  /\  z  =  R )
54mosubop 4432 . . . 4  |-  E* z E. w E. v ( x  =  <. w ,  v >.  /\  E. u E. f ( y  =  <. u ,  f
>.  /\  z  =  R ) )
6 anass 393 . . . . . . . 8  |-  ( ( ( x  =  <. w ,  v >.  /\  y  =  <. u ,  f
>. )  /\  z  =  R )  <->  ( x  =  <. w ,  v
>.  /\  ( y  = 
<. u ,  f >.  /\  z  =  R
) ) )
762exbii 1538 . . . . . . 7  |-  ( E. u E. f ( ( x  =  <. w ,  v >.  /\  y  =  <. u ,  f
>. )  /\  z  =  R )  <->  E. u E. f ( x  = 
<. w ,  v >.  /\  ( y  =  <. u ,  f >.  /\  z  =  R ) ) )
8 19.42vv 1830 . . . . . . 7  |-  ( E. u E. f ( x  =  <. w ,  v >.  /\  (
y  =  <. u ,  f >.  /\  z  =  R ) )  <->  ( x  =  <. w ,  v
>.  /\  E. u E. f ( y  = 
<. u ,  f >.  /\  z  =  R
) ) )
97, 8bitri 182 . . . . . 6  |-  ( E. u E. f ( ( x  =  <. w ,  v >.  /\  y  =  <. u ,  f
>. )  /\  z  =  R )  <->  ( x  =  <. w ,  v
>.  /\  E. u E. f ( y  = 
<. u ,  f >.  /\  z  =  R
) ) )
1092exbii 1538 . . . . 5  |-  ( E. w E. v E. u E. f ( ( x  =  <. w ,  v >.  /\  y  =  <. u ,  f
>. )  /\  z  =  R )  <->  E. w E. v ( x  = 
<. w ,  v >.  /\  E. u E. f
( y  =  <. u ,  f >.  /\  z  =  R ) ) )
1110mobii 1979 . . . 4  |-  ( E* z E. w E. v E. u E. f
( ( x  = 
<. w ,  v >.  /\  y  =  <. u ,  f >. )  /\  z  =  R
)  <->  E* z E. w E. v ( x  = 
<. w ,  v >.  /\  E. u E. f
( y  =  <. u ,  f >.  /\  z  =  R ) ) )
125, 11mpbir 144 . . 3  |-  E* z E. w E. v E. u E. f ( ( x  =  <. w ,  v >.  /\  y  =  <. u ,  f
>. )  /\  z  =  R )
1312a1i 9 . 2  |-  ( ( x  e.  ( H  X.  H )  /\  y  e.  ( H  X.  H ) )  ->  E* z E. w E. v E. u E. f
( ( x  = 
<. w ,  v >.  /\  y  =  <. u ,  f >. )  /\  z  =  R
) )
14 oprabex3.2 . 2  |-  F  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  ( H  X.  H
)  /\  y  e.  ( H  X.  H
) )  /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v
>.  /\  y  =  <. u ,  f >. )  /\  z  =  R
) ) }
152, 2, 13, 14oprabex 5786 1  |-  F  e. 
_V
Colors of variables: wff set class
Syntax hints:    /\ wa 102    = wceq 1285   E.wex 1422    e. wcel 1434   E*wmo 1943   _Vcvv 2602   <.cop 3409    X. cxp 4369   {coprab 5544
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-coll 3901  ax-sep 3904  ax-pow 3956  ax-pr 3972  ax-un 4196
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ral 2354  df-rex 2355  df-reu 2356  df-rab 2358  df-v 2604  df-sbc 2817  df-csb 2910  df-un 2978  df-in 2980  df-ss 2987  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-uni 3610  df-iun 3688  df-br 3794  df-opab 3848  df-mpt 3849  df-id 4056  df-xp 4377  df-rel 4378  df-cnv 4379  df-co 4380  df-dm 4381  df-rn 4382  df-res 4383  df-ima 4384  df-iota 4897  df-fun 4934  df-fn 4935  df-f 4936  df-f1 4937  df-fo 4938  df-f1o 4939  df-fv 4940  df-oprab 5547
This theorem is referenced by:  addvalex  7074
  Copyright terms: Public domain W3C validator