ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oprabss Unicode version

Theorem oprabss 5850
Description: Structure of an operation class abstraction. (Contributed by NM, 28-Nov-2006.)
Assertion
Ref Expression
oprabss  |-  { <. <.
x ,  y >. ,  z >.  |  ph }  C_  ( ( _V 
X.  _V )  X.  _V )
Distinct variable group:    x, y, z
Allowed substitution hints:    ph( x, y, z)

Proof of Theorem oprabss
StepHypRef Expression
1 reloprab 5812 . . 3  |-  Rel  { <. <. x ,  y
>. ,  z >.  | 
ph }
2 relssdmrn 5054 . . 3  |-  ( Rel 
{ <. <. x ,  y
>. ,  z >.  | 
ph }  ->  { <. <.
x ,  y >. ,  z >.  |  ph }  C_  ( dom  { <. <. x ,  y
>. ,  z >.  | 
ph }  X.  ran  {
<. <. x ,  y
>. ,  z >.  | 
ph } ) )
31, 2ax-mp 5 . 2  |-  { <. <.
x ,  y >. ,  z >.  |  ph }  C_  ( dom  { <. <. x ,  y
>. ,  z >.  | 
ph }  X.  ran  {
<. <. x ,  y
>. ,  z >.  | 
ph } )
4 reldmoprab 5849 . . . 4  |-  Rel  dom  {
<. <. x ,  y
>. ,  z >.  | 
ph }
5 df-rel 4541 . . . 4  |-  ( Rel 
dom  { <. <. x ,  y
>. ,  z >.  | 
ph }  <->  dom  { <. <.
x ,  y >. ,  z >.  |  ph }  C_  ( _V  X.  _V ) )
64, 5mpbi 144 . . 3  |-  dom  { <. <. x ,  y
>. ,  z >.  | 
ph }  C_  ( _V  X.  _V )
7 ssv 3114 . . 3  |-  ran  { <. <. x ,  y
>. ,  z >.  | 
ph }  C_  _V
8 xpss12 4641 . . 3  |-  ( ( dom  { <. <. x ,  y >. ,  z
>.  |  ph }  C_  ( _V  X.  _V )  /\  ran  { <. <. x ,  y >. ,  z
>.  |  ph }  C_  _V )  ->  ( dom 
{ <. <. x ,  y
>. ,  z >.  | 
ph }  X.  ran  {
<. <. x ,  y
>. ,  z >.  | 
ph } )  C_  ( ( _V  X.  _V )  X.  _V )
)
96, 7, 8mp2an 422 . 2  |-  ( dom 
{ <. <. x ,  y
>. ,  z >.  | 
ph }  X.  ran  {
<. <. x ,  y
>. ,  z >.  | 
ph } )  C_  ( ( _V  X.  _V )  X.  _V )
103, 9sstri 3101 1  |-  { <. <.
x ,  y >. ,  z >.  |  ph }  C_  ( ( _V 
X.  _V )  X.  _V )
Colors of variables: wff set class
Syntax hints:   _Vcvv 2681    C_ wss 3066    X. cxp 4532   dom cdm 4534   ran crn 4535   Rel wrel 4539   {coprab 5768
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419  df-rex 2420  df-v 2683  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-br 3925  df-opab 3985  df-xp 4540  df-rel 4541  df-cnv 4542  df-dm 4544  df-rn 4545  df-oprab 5771
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator