ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opswapg Unicode version

Theorem opswapg 4831
Description: Swap the members of an ordered pair. (Contributed by Jim Kingdon, 16-Dec-2018.)
Assertion
Ref Expression
opswapg  |-  ( ( A  e.  V  /\  B  e.  W )  ->  U. `' { <. A ,  B >. }  =  <. B ,  A >. )

Proof of Theorem opswapg
StepHypRef Expression
1 cnvsng 4830 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  `' { <. A ,  B >. }  =  { <. B ,  A >. } )
21unieqd 3614 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  U. `' { <. A ,  B >. }  =  U. { <. B ,  A >. } )
3 elex 2611 . . . 4  |-  ( B  e.  W  ->  B  e.  _V )
4 elex 2611 . . . 4  |-  ( A  e.  V  ->  A  e.  _V )
5 opexg 3985 . . . 4  |-  ( ( B  e.  _V  /\  A  e.  _V )  -> 
<. B ,  A >.  e. 
_V )
63, 4, 5syl2anr 284 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  -> 
<. B ,  A >.  e. 
_V )
7 unisng 3620 . . 3  |-  ( <. B ,  A >.  e. 
_V  ->  U. { <. B ,  A >. }  =  <. B ,  A >. )
86, 7syl 14 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  U. { <. B ,  A >. }  =  <. B ,  A >. )
92, 8eqtrd 2114 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  U. `' { <. A ,  B >. }  =  <. B ,  A >. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1285    e. wcel 1434   _Vcvv 2602   {csn 3400   <.cop 3403   U.cuni 3603   `'ccnv 4364
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3898  ax-pow 3950  ax-pr 3966
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ral 2354  df-rex 2355  df-v 2604  df-un 2978  df-in 2980  df-ss 2987  df-pw 3386  df-sn 3406  df-pr 3407  df-op 3409  df-uni 3604  df-br 3788  df-opab 3842  df-xp 4371  df-rel 4372  df-cnv 4373
This theorem is referenced by:  2nd1st  5831  cnvf1olem  5870  brtposg  5897  dftpos4  5906  tpostpos  5907  xpcomco  6360
  Copyright terms: Public domain W3C validator