ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opthreg Unicode version

Theorem opthreg 4307
Description: Theorem for alternate representation of ordered pairs, requiring the Axiom of Set Induction ax-setind 4288 (via the preleq 4306 step). See df-op 3415 for a description of other ordered pair representations. Exercise 34 of [Enderton] p. 207. (Contributed by NM, 16-Oct-1996.)
Hypotheses
Ref Expression
preleq.1  |-  A  e. 
_V
preleq.2  |-  B  e. 
_V
preleq.3  |-  C  e. 
_V
preleq.4  |-  D  e. 
_V
Assertion
Ref Expression
opthreg  |-  ( { A ,  { A ,  B } }  =  { C ,  { C ,  D } }  <->  ( A  =  C  /\  B  =  D ) )

Proof of Theorem opthreg
StepHypRef Expression
1 preleq.1 . . . . 5  |-  A  e. 
_V
21prid1 3506 . . . 4  |-  A  e. 
{ A ,  B }
3 preleq.3 . . . . 5  |-  C  e. 
_V
43prid1 3506 . . . 4  |-  C  e. 
{ C ,  D }
5 preleq.2 . . . . . 6  |-  B  e. 
_V
6 prexg 3974 . . . . . 6  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  { A ,  B }  e.  _V )
71, 5, 6mp2an 417 . . . . 5  |-  { A ,  B }  e.  _V
8 preleq.4 . . . . . 6  |-  D  e. 
_V
9 prexg 3974 . . . . . 6  |-  ( ( C  e.  _V  /\  D  e.  _V )  ->  { C ,  D }  e.  _V )
103, 8, 9mp2an 417 . . . . 5  |-  { C ,  D }  e.  _V
111, 7, 3, 10preleq 4306 . . . 4  |-  ( ( ( A  e.  { A ,  B }  /\  C  e.  { C ,  D } )  /\  { A ,  { A ,  B } }  =  { C ,  { C ,  D } } )  ->  ( A  =  C  /\  { A ,  B }  =  { C ,  D }
) )
122, 4, 11mpanl12 427 . . 3  |-  ( { A ,  { A ,  B } }  =  { C ,  { C ,  D } }  ->  ( A  =  C  /\  { A ,  B }  =  { C ,  D } ) )
13 preq1 3477 . . . . . 6  |-  ( A  =  C  ->  { A ,  B }  =  { C ,  B }
)
1413eqeq1d 2090 . . . . 5  |-  ( A  =  C  ->  ( { A ,  B }  =  { C ,  D } 
<->  { C ,  B }  =  { C ,  D } ) )
155, 8preqr2 3569 . . . . 5  |-  ( { C ,  B }  =  { C ,  D }  ->  B  =  D )
1614, 15syl6bi 161 . . . 4  |-  ( A  =  C  ->  ( { A ,  B }  =  { C ,  D }  ->  B  =  D ) )
1716imdistani 434 . . 3  |-  ( ( A  =  C  /\  { A ,  B }  =  { C ,  D } )  ->  ( A  =  C  /\  B  =  D )
)
1812, 17syl 14 . 2  |-  ( { A ,  { A ,  B } }  =  { C ,  { C ,  D } }  ->  ( A  =  C  /\  B  =  D )
)
19 preq1 3477 . . . 4  |-  ( A  =  C  ->  { A ,  { A ,  B } }  =  { C ,  { A ,  B } } )
2019adantr 270 . . 3  |-  ( ( A  =  C  /\  B  =  D )  ->  { A ,  { A ,  B } }  =  { C ,  { A ,  B } } )
21 preq12 3479 . . . 4  |-  ( ( A  =  C  /\  B  =  D )  ->  { A ,  B }  =  { C ,  D } )
2221preq2d 3484 . . 3  |-  ( ( A  =  C  /\  B  =  D )  ->  { C ,  { A ,  B } }  =  { C ,  { C ,  D } } )
2320, 22eqtrd 2114 . 2  |-  ( ( A  =  C  /\  B  =  D )  ->  { A ,  { A ,  B } }  =  { C ,  { C ,  D } } )
2418, 23impbii 124 1  |-  ( { A ,  { A ,  B } }  =  { C ,  { C ,  D } }  <->  ( A  =  C  /\  B  =  D ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 102    <-> wb 103    = wceq 1285    e. wcel 1434   _Vcvv 2602   {cpr 3407
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3904  ax-pr 3972  ax-setind 4288
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1687  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ral 2354  df-v 2604  df-dif 2976  df-un 2978  df-sn 3412  df-pr 3413
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator