ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  optocl Unicode version

Theorem optocl 4442
Description: Implicit substitution of class for ordered pair. (Contributed by NM, 5-Mar-1995.)
Hypotheses
Ref Expression
optocl.1  |-  D  =  ( B  X.  C
)
optocl.2  |-  ( <.
x ,  y >.  =  A  ->  ( ph  <->  ps ) )
optocl.3  |-  ( ( x  e.  B  /\  y  e.  C )  ->  ph )
Assertion
Ref Expression
optocl  |-  ( A  e.  D  ->  ps )
Distinct variable groups:    x, y, A   
x, B, y    x, C, y    ps, x, y
Allowed substitution hints:    ph( x, y)    D( x, y)

Proof of Theorem optocl
StepHypRef Expression
1 elxp3 4420 . . 3  |-  ( A  e.  ( B  X.  C )  <->  E. x E. y ( <. x ,  y >.  =  A  /\  <. x ,  y
>.  e.  ( B  X.  C ) ) )
2 opelxp 4400 . . . . . . 7  |-  ( <.
x ,  y >.  e.  ( B  X.  C
)  <->  ( x  e.  B  /\  y  e.  C ) )
3 optocl.3 . . . . . . 7  |-  ( ( x  e.  B  /\  y  e.  C )  ->  ph )
42, 3sylbi 119 . . . . . 6  |-  ( <.
x ,  y >.  e.  ( B  X.  C
)  ->  ph )
5 optocl.2 . . . . . 6  |-  ( <.
x ,  y >.  =  A  ->  ( ph  <->  ps ) )
64, 5syl5ib 152 . . . . 5  |-  ( <.
x ,  y >.  =  A  ->  ( <.
x ,  y >.  e.  ( B  X.  C
)  ->  ps )
)
76imp 122 . . . 4  |-  ( (
<. x ,  y >.  =  A  /\  <. x ,  y >.  e.  ( B  X.  C ) )  ->  ps )
87exlimivv 1818 . . 3  |-  ( E. x E. y (
<. x ,  y >.  =  A  /\  <. x ,  y >.  e.  ( B  X.  C ) )  ->  ps )
91, 8sylbi 119 . 2  |-  ( A  e.  ( B  X.  C )  ->  ps )
10 optocl.1 . 2  |-  D  =  ( B  X.  C
)
119, 10eleq2s 2174 1  |-  ( A  e.  D  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1285   E.wex 1422    e. wcel 1434   <.cop 3409    X. cxp 4369
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3904  ax-pow 3956  ax-pr 3972
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1687  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ral 2354  df-rex 2355  df-v 2604  df-un 2978  df-in 2980  df-ss 2987  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-opab 3848  df-xp 4377
This theorem is referenced by:  2optocl  4443  3optocl  4444  ecoptocl  6259  ax1rid  7105  ax0id  7106  axcnre  7109
  Copyright terms: Public domain W3C validator