ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  orass Unicode version

Theorem orass 694
Description: Associative law for disjunction. Theorem *4.33 of [WhiteheadRussell] p. 118. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
orass  |-  ( ( ( ph  \/  ps )  \/  ch )  <->  (
ph  \/  ( ps  \/  ch ) ) )

Proof of Theorem orass
StepHypRef Expression
1 orcom 657 . 2  |-  ( ( ( ph  \/  ps )  \/  ch )  <->  ( ch  \/  ( ph  \/  ps ) ) )
2 or12 693 . 2  |-  ( ( ch  \/  ( ph  \/  ps ) )  <->  ( ph  \/  ( ch  \/  ps ) ) )
3 orcom 657 . . 3  |-  ( ( ch  \/  ps )  <->  ( ps  \/  ch )
)
43orbi2i 689 . 2  |-  ( (
ph  \/  ( ch  \/  ps ) )  <->  ( ph  \/  ( ps  \/  ch ) ) )
51, 2, 43bitri 199 1  |-  ( ( ( ph  \/  ps )  \/  ch )  <->  (
ph  \/  ( ps  \/  ch ) ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 102    \/ wo 639
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640
This theorem depends on definitions:  df-bi 114
This theorem is referenced by:  pm2.31  695  pm2.32  696  or32  697  or4  698  3orass  899  dveeq2  1712  dveeq2or  1713  sbequilem  1735  dvelimALT  1902  dvelimfv  1903  dvelimor  1910  unass  3128  ltxr  8796
  Copyright terms: Public domain W3C validator