ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ord3ex Unicode version

Theorem ord3ex 3969
Description: The ordinal number 3 is a set, proved without the Axiom of Union. (Contributed by NM, 2-May-2009.)
Assertion
Ref Expression
ord3ex  |-  { (/) ,  { (/) } ,  { (/)
,  { (/) } } }  e.  _V

Proof of Theorem ord3ex
StepHypRef Expression
1 df-tp 3411 . 2  |-  { (/) ,  { (/) } ,  { (/)
,  { (/) } } }  =  ( { (/)
,  { (/) } }  u.  { { (/) ,  { (/)
} } } )
2 pp0ex 3968 . . . . 5  |-  { (/) ,  { (/) } }  e.  _V
32pwex 3960 . . . 4  |-  ~P { (/)
,  { (/) } }  e.  _V
4 pwprss 3604 . . . 4  |-  ( {
(/) ,  { (/) } }  u.  { { { (/) } } ,  { (/) ,  { (/) } } }
)  C_  ~P { (/) ,  { (/) } }
53, 4ssexi 3923 . . 3  |-  ( {
(/) ,  { (/) } }  u.  { { { (/) } } ,  { (/) ,  { (/) } } }
)  e.  _V
6 snsspr2 3541 . . . 4  |-  { { (/)
,  { (/) } } }  C_  { { { (/)
} } ,  { (/)
,  { (/) } } }
7 unss2 3142 . . . 4  |-  ( { { (/) ,  { (/) } } }  C_  { { { (/) } } ,  { (/) ,  { (/) } } }  ->  ( { (/) ,  { (/) } }  u.  { { (/)
,  { (/) } } } )  C_  ( { (/) ,  { (/) } }  u.  { { { (/) } } ,  { (/) ,  { (/) } } } ) )
86, 7ax-mp 7 . . 3  |-  ( {
(/) ,  { (/) } }  u.  { { (/) ,  { (/)
} } } ) 
C_  ( { (/) ,  { (/) } }  u.  { { { (/) } } ,  { (/) ,  { (/) } } } )
95, 8ssexi 3923 . 2  |-  ( {
(/) ,  { (/) } }  u.  { { (/) ,  { (/)
} } } )  e.  _V
101, 9eqeltri 2126 1  |-  { (/) ,  { (/) } ,  { (/)
,  { (/) } } }  e.  _V
Colors of variables: wff set class
Syntax hints:    e. wcel 1409   _Vcvv 2574    u. cun 2943    C_ wss 2945   (/)c0 3252   ~Pcpw 3387   {csn 3403   {cpr 3404   {ctp 3405
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3903  ax-nul 3911  ax-pow 3955
This theorem depends on definitions:  df-bi 114  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-v 2576  df-dif 2948  df-un 2950  df-in 2952  df-ss 2959  df-nul 3253  df-pw 3389  df-sn 3409  df-pr 3410  df-tp 3411
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator