ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  orddif Unicode version

Theorem orddif 4298
Description: Ordinal derived from its successor. (Contributed by NM, 20-May-1998.)
Assertion
Ref Expression
orddif  |-  ( Ord 
A  ->  A  =  ( suc  A  \  { A } ) )

Proof of Theorem orddif
StepHypRef Expression
1 orddisj 4297 . 2  |-  ( Ord 
A  ->  ( A  i^i  { A } )  =  (/) )
2 disj3 3303 . . 3  |-  ( ( A  i^i  { A } )  =  (/)  <->  A  =  ( A  \  { A } ) )
3 df-suc 4134 . . . . . 6  |-  suc  A  =  ( A  u.  { A } )
43difeq1i 3087 . . . . 5  |-  ( suc 
A  \  { A } )  =  ( ( A  u.  { A } )  \  { A } )
5 difun2 3329 . . . . 5  |-  ( ( A  u.  { A } )  \  { A } )  =  ( A  \  { A } )
64, 5eqtri 2102 . . . 4  |-  ( suc 
A  \  { A } )  =  ( A  \  { A } )
76eqeq2i 2092 . . 3  |-  ( A  =  ( suc  A  \  { A } )  <-> 
A  =  ( A 
\  { A }
) )
82, 7bitr4i 185 . 2  |-  ( ( A  i^i  { A } )  =  (/)  <->  A  =  ( suc  A  \  { A } ) )
91, 8sylib 120 1  |-  ( Ord 
A  ->  A  =  ( suc  A  \  { A } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1285    \ cdif 2971    u. cun 2972    i^i cin 2973   (/)c0 3258   {csn 3406   Ord word 4125   suc csuc 4128
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-setind 4288
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1687  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ne 2247  df-ral 2354  df-rab 2358  df-v 2604  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-nul 3259  df-sn 3412  df-suc 4134
This theorem is referenced by:  phplem3  6389  phplem4  6390  phplem4dom  6397  phplem4on  6402  dif1en  6414
  Copyright terms: Public domain W3C validator