ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordelon Unicode version

Theorem ordelon 4167
Description: An element of an ordinal class is an ordinal number. (Contributed by NM, 26-Oct-2003.)
Assertion
Ref Expression
ordelon  |-  ( ( Ord  A  /\  B  e.  A )  ->  B  e.  On )

Proof of Theorem ordelon
StepHypRef Expression
1 ordelord 4165 . 2  |-  ( ( Ord  A  /\  B  e.  A )  ->  Ord  B )
2 elong 4157 . . 3  |-  ( B  e.  A  ->  ( B  e.  On  <->  Ord  B ) )
32adantl 271 . 2  |-  ( ( Ord  A  /\  B  e.  A )  ->  ( B  e.  On  <->  Ord  B ) )
41, 3mpbird 165 1  |-  ( ( Ord  A  /\  B  e.  A )  ->  B  e.  On )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    e. wcel 1434   Ord word 4146   Oncon0 4147
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1688  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ral 2358  df-rex 2359  df-v 2613  df-in 2989  df-ss 2996  df-uni 3623  df-tr 3897  df-iord 4150  df-on 4152
This theorem is referenced by:  onelon  4168  ordsson  4265  ordpwsucss  4339  tfr1onlemsucfn  6011  tfr1onlemsucaccv  6012  tfr1onlembfn  6015  tfr1onlemubacc  6017  tfr1onlemaccex  6019  tfrcllemsucfn  6024  tfrcllemsucaccv  6025  tfrcllembfn  6028  tfrcllemubacc  6030  tfrcllemaccex  6032  tfrcl  6035
  Copyright terms: Public domain W3C validator