![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > orim2i | Unicode version |
Description: Introduce disjunct to both sides of an implication. (Contributed by NM, 6-Jun-1994.) |
Ref | Expression |
---|---|
orim1i.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
orim2i |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | orim1i.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | orim12i 709 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 |
This theorem depends on definitions: df-bi 115 |
This theorem is referenced by: orbi2i 712 pm1.5 715 pm2.3 725 ordi 763 dcn 780 pm2.25dc 826 dcan 876 axi12 1448 dveeq2or 1738 equs5or 1752 sb4or 1755 sb4bor 1757 nfsb2or 1759 sbequilem 1760 sbequi 1761 sbal1yz 1919 dvelimor 1936 exmodc 1992 r19.44av 2514 elsuci 4166 acexmidlemcase 5538 zindd 8546 |
Copyright terms: Public domain | W3C validator |