ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ov6g Unicode version

Theorem ov6g 5669
Description: The value of an operation class abstraction. Special case. (Contributed by NM, 13-Nov-2006.)
Hypotheses
Ref Expression
ov6g.1  |-  ( <.
x ,  y >.  =  <. A ,  B >.  ->  R  =  S )
ov6g.2  |-  F  =  { <. <. x ,  y
>. ,  z >.  |  ( <. x ,  y
>.  e.  C  /\  z  =  R ) }
Assertion
Ref Expression
ov6g  |-  ( ( ( A  e.  G  /\  B  e.  H  /\  <. A ,  B >.  e.  C )  /\  S  e.  J )  ->  ( A F B )  =  S )
Distinct variable groups:    x, y, z, A    x, B, y, z    x, C, y, z    z, R    x, S, y, z
Allowed substitution hints:    R( x, y)    F( x, y, z)    G( x, y, z)    H( x, y, z)    J( x, y, z)

Proof of Theorem ov6g
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 df-ov 5546 . 2  |-  ( A F B )  =  ( F `  <. A ,  B >. )
2 eqid 2082 . . . . . 6  |-  S  =  S
3 biidd 170 . . . . . . 7  |-  ( ( x  =  A  /\  y  =  B )  ->  ( S  =  S  <-> 
S  =  S ) )
43copsex2g 4009 . . . . . 6  |-  ( ( A  e.  G  /\  B  e.  H )  ->  ( E. x E. y ( <. A ,  B >.  =  <. x ,  y >.  /\  S  =  S )  <->  S  =  S ) )
52, 4mpbiri 166 . . . . 5  |-  ( ( A  e.  G  /\  B  e.  H )  ->  E. x E. y
( <. A ,  B >.  =  <. x ,  y
>.  /\  S  =  S ) )
653adant3 959 . . . 4  |-  ( ( A  e.  G  /\  B  e.  H  /\  <. A ,  B >.  e.  C )  ->  E. x E. y ( <. A ,  B >.  =  <. x ,  y >.  /\  S  =  S ) )
76adantr 270 . . 3  |-  ( ( ( A  e.  G  /\  B  e.  H  /\  <. A ,  B >.  e.  C )  /\  S  e.  J )  ->  E. x E. y
( <. A ,  B >.  =  <. x ,  y
>.  /\  S  =  S ) )
8 eqeq1 2088 . . . . . . . 8  |-  ( w  =  <. A ,  B >.  ->  ( w  = 
<. x ,  y >.  <->  <. A ,  B >.  = 
<. x ,  y >.
) )
98anbi1d 453 . . . . . . 7  |-  ( w  =  <. A ,  B >.  ->  ( ( w  =  <. x ,  y
>.  /\  z  =  R )  <->  ( <. A ,  B >.  =  <. x ,  y >.  /\  z  =  R ) ) )
10 ov6g.1 . . . . . . . . . 10  |-  ( <.
x ,  y >.  =  <. A ,  B >.  ->  R  =  S )
1110eqeq2d 2093 . . . . . . . . 9  |-  ( <.
x ,  y >.  =  <. A ,  B >.  ->  ( z  =  R  <->  z  =  S ) )
1211eqcoms 2085 . . . . . . . 8  |-  ( <. A ,  B >.  = 
<. x ,  y >.  ->  ( z  =  R  <-> 
z  =  S ) )
1312pm5.32i 442 . . . . . . 7  |-  ( (
<. A ,  B >.  = 
<. x ,  y >.  /\  z  =  R
)  <->  ( <. A ,  B >.  =  <. x ,  y >.  /\  z  =  S ) )
149, 13syl6bb 194 . . . . . 6  |-  ( w  =  <. A ,  B >.  ->  ( ( w  =  <. x ,  y
>.  /\  z  =  R )  <->  ( <. A ,  B >.  =  <. x ,  y >.  /\  z  =  S ) ) )
15142exbidv 1790 . . . . 5  |-  ( w  =  <. A ,  B >.  ->  ( E. x E. y ( w  = 
<. x ,  y >.  /\  z  =  R
)  <->  E. x E. y
( <. A ,  B >.  =  <. x ,  y
>.  /\  z  =  S ) ) )
16 eqeq1 2088 . . . . . . 7  |-  ( z  =  S  ->  (
z  =  S  <->  S  =  S ) )
1716anbi2d 452 . . . . . 6  |-  ( z  =  S  ->  (
( <. A ,  B >.  =  <. x ,  y
>.  /\  z  =  S )  <->  ( <. A ,  B >.  =  <. x ,  y >.  /\  S  =  S ) ) )
18172exbidv 1790 . . . . 5  |-  ( z  =  S  ->  ( E. x E. y (
<. A ,  B >.  = 
<. x ,  y >.  /\  z  =  S
)  <->  E. x E. y
( <. A ,  B >.  =  <. x ,  y
>.  /\  S  =  S ) ) )
19 moeq 2768 . . . . . . 7  |-  E* z 
z  =  R
2019mosubop 4432 . . . . . 6  |-  E* z E. x E. y ( w  =  <. x ,  y >.  /\  z  =  R )
2120a1i 9 . . . . 5  |-  ( w  e.  C  ->  E* z E. x E. y
( w  =  <. x ,  y >.  /\  z  =  R ) )
22 ov6g.2 . . . . . 6  |-  F  =  { <. <. x ,  y
>. ,  z >.  |  ( <. x ,  y
>.  e.  C  /\  z  =  R ) }
23 dfoprab2 5583 . . . . . 6  |-  { <. <.
x ,  y >. ,  z >.  |  (
<. x ,  y >.  e.  C  /\  z  =  R ) }  =  { <. w ,  z
>.  |  E. x E. y ( w  = 
<. x ,  y >.  /\  ( <. x ,  y
>.  e.  C  /\  z  =  R ) ) }
24 eleq1 2142 . . . . . . . . . . . 12  |-  ( w  =  <. x ,  y
>.  ->  ( w  e.  C  <->  <. x ,  y
>.  e.  C ) )
2524anbi1d 453 . . . . . . . . . . 11  |-  ( w  =  <. x ,  y
>.  ->  ( ( w  e.  C  /\  z  =  R )  <->  ( <. x ,  y >.  e.  C  /\  z  =  R
) ) )
2625pm5.32i 442 . . . . . . . . . 10  |-  ( ( w  =  <. x ,  y >.  /\  (
w  e.  C  /\  z  =  R )
)  <->  ( w  = 
<. x ,  y >.  /\  ( <. x ,  y
>.  e.  C  /\  z  =  R ) ) )
27 an12 526 . . . . . . . . . 10  |-  ( ( w  =  <. x ,  y >.  /\  (
w  e.  C  /\  z  =  R )
)  <->  ( w  e.  C  /\  ( w  =  <. x ,  y
>.  /\  z  =  R ) ) )
2826, 27bitr3i 184 . . . . . . . . 9  |-  ( ( w  =  <. x ,  y >.  /\  ( <. x ,  y >.  e.  C  /\  z  =  R ) )  <->  ( w  e.  C  /\  (
w  =  <. x ,  y >.  /\  z  =  R ) ) )
29282exbii 1538 . . . . . . . 8  |-  ( E. x E. y ( w  =  <. x ,  y >.  /\  ( <. x ,  y >.  e.  C  /\  z  =  R ) )  <->  E. x E. y ( w  e.  C  /\  ( w  =  <. x ,  y
>.  /\  z  =  R ) ) )
30 19.42vv 1830 . . . . . . . 8  |-  ( E. x E. y ( w  e.  C  /\  ( w  =  <. x ,  y >.  /\  z  =  R ) )  <->  ( w  e.  C  /\  E. x E. y ( w  = 
<. x ,  y >.  /\  z  =  R
) ) )
3129, 30bitri 182 . . . . . . 7  |-  ( E. x E. y ( w  =  <. x ,  y >.  /\  ( <. x ,  y >.  e.  C  /\  z  =  R ) )  <->  ( w  e.  C  /\  E. x E. y ( w  = 
<. x ,  y >.  /\  z  =  R
) ) )
3231opabbii 3853 . . . . . 6  |-  { <. w ,  z >.  |  E. x E. y ( w  =  <. x ,  y
>.  /\  ( <. x ,  y >.  e.  C  /\  z  =  R
) ) }  =  { <. w ,  z
>.  |  ( w  e.  C  /\  E. x E. y ( w  = 
<. x ,  y >.  /\  z  =  R
) ) }
3322, 23, 323eqtri 2106 . . . . 5  |-  F  =  { <. w ,  z
>.  |  ( w  e.  C  /\  E. x E. y ( w  = 
<. x ,  y >.  /\  z  =  R
) ) }
3415, 18, 21, 33fvopab3ig 5278 . . . 4  |-  ( (
<. A ,  B >.  e.  C  /\  S  e.  J )  ->  ( E. x E. y (
<. A ,  B >.  = 
<. x ,  y >.  /\  S  =  S
)  ->  ( F `  <. A ,  B >. )  =  S ) )
35343ad2antl3 1103 . . 3  |-  ( ( ( A  e.  G  /\  B  e.  H  /\  <. A ,  B >.  e.  C )  /\  S  e.  J )  ->  ( E. x E. y ( <. A ,  B >.  =  <. x ,  y >.  /\  S  =  S )  ->  ( F `  <. A ,  B >. )  =  S ) )
367, 35mpd 13 . 2  |-  ( ( ( A  e.  G  /\  B  e.  H  /\  <. A ,  B >.  e.  C )  /\  S  e.  J )  ->  ( F `  <. A ,  B >. )  =  S )
371, 36syl5eq 2126 1  |-  ( ( ( A  e.  G  /\  B  e.  H  /\  <. A ,  B >.  e.  C )  /\  S  e.  J )  ->  ( A F B )  =  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    /\ w3a 920    = wceq 1285   E.wex 1422    e. wcel 1434   E*wmo 1943   <.cop 3409   {copab 3846   ` cfv 4932  (class class class)co 5543   {coprab 5544
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3904  ax-pow 3956  ax-pr 3972
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ral 2354  df-rex 2355  df-v 2604  df-sbc 2817  df-un 2978  df-in 2980  df-ss 2987  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-uni 3610  df-br 3794  df-opab 3848  df-id 4056  df-xp 4377  df-rel 4378  df-cnv 4379  df-co 4380  df-dm 4381  df-iota 4897  df-fun 4934  df-fv 4940  df-ov 5546  df-oprab 5547
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator