ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovidi Unicode version

Theorem ovidi 5650
Description: The value of an operation class abstraction (weak version). (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypotheses
Ref Expression
ovidi.2  |-  ( ( x  e.  R  /\  y  e.  S )  ->  E* z ph )
ovidi.3  |-  F  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  R  /\  y  e.  S )  /\  ph ) }
Assertion
Ref Expression
ovidi  |-  ( ( x  e.  R  /\  y  e.  S )  ->  ( ph  ->  (
x F y )  =  z ) )
Distinct variable groups:    x, y, z   
z, R    z, S
Allowed substitution hints:    ph( x, y, z)    R( x, y)    S( x, y)    F( x, y, z)

Proof of Theorem ovidi
StepHypRef Expression
1 ovidi.2 . . . 4  |-  ( ( x  e.  R  /\  y  e.  S )  ->  E* z ph )
2 moanimv 2017 . . . 4  |-  ( E* z ( ( x  e.  R  /\  y  e.  S )  /\  ph ) 
<->  ( ( x  e.  R  /\  y  e.  S )  ->  E* z ph ) )
31, 2mpbir 144 . . 3  |-  E* z
( ( x  e.  R  /\  y  e.  S )  /\  ph )
4 ovidi.3 . . 3  |-  F  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  R  /\  y  e.  S )  /\  ph ) }
53, 4ovidig 5649 . 2  |-  ( ( ( x  e.  R  /\  y  e.  S
)  /\  ph )  -> 
( x F y )  =  z )
65ex 113 1  |-  ( ( x  e.  R  /\  y  e.  S )  ->  ( ph  ->  (
x F y )  =  z ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1285    e. wcel 1434   E*wmo 1943  (class class class)co 5543   {coprab 5544
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3904  ax-pow 3956  ax-pr 3972  ax-setind 4288
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ne 2247  df-ral 2354  df-rex 2355  df-v 2604  df-sbc 2817  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-uni 3610  df-br 3794  df-opab 3848  df-id 4056  df-xp 4377  df-rel 4378  df-cnv 4379  df-co 4380  df-dm 4381  df-iota 4897  df-fun 4934  df-fv 4940  df-ov 5546  df-oprab 5547
This theorem is referenced by:  ovmpt4g  5654  ovi3  5668
  Copyright terms: Public domain W3C validator