ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovmpt2ga Unicode version

Theorem ovmpt2ga 5661
Description: Value of an operation given by a maps-to rule. (Contributed by Mario Carneiro, 19-Dec-2013.)
Hypotheses
Ref Expression
ovmpt2ga.1  |-  ( ( x  =  A  /\  y  =  B )  ->  R  =  S )
ovmpt2ga.2  |-  F  =  ( x  e.  C ,  y  e.  D  |->  R )
Assertion
Ref Expression
ovmpt2ga  |-  ( ( A  e.  C  /\  B  e.  D  /\  S  e.  H )  ->  ( A F B )  =  S )
Distinct variable groups:    x, y, A   
x, B, y    x, C, y    x, D, y   
x, S, y
Allowed substitution hints:    R( x, y)    F( x, y)    H( x, y)

Proof of Theorem ovmpt2ga
StepHypRef Expression
1 elex 2611 . 2  |-  ( S  e.  H  ->  S  e.  _V )
2 ovmpt2ga.2 . . . 4  |-  F  =  ( x  e.  C ,  y  e.  D  |->  R )
32a1i 9 . . 3  |-  ( ( A  e.  C  /\  B  e.  D  /\  S  e.  _V )  ->  F  =  ( x  e.  C ,  y  e.  D  |->  R ) )
4 ovmpt2ga.1 . . . 4  |-  ( ( x  =  A  /\  y  =  B )  ->  R  =  S )
54adantl 271 . . 3  |-  ( ( ( A  e.  C  /\  B  e.  D  /\  S  e.  _V )  /\  ( x  =  A  /\  y  =  B ) )  ->  R  =  S )
6 simp1 939 . . 3  |-  ( ( A  e.  C  /\  B  e.  D  /\  S  e.  _V )  ->  A  e.  C )
7 simp2 940 . . 3  |-  ( ( A  e.  C  /\  B  e.  D  /\  S  e.  _V )  ->  B  e.  D )
8 simp3 941 . . 3  |-  ( ( A  e.  C  /\  B  e.  D  /\  S  e.  _V )  ->  S  e.  _V )
93, 5, 6, 7, 8ovmpt2d 5659 . 2  |-  ( ( A  e.  C  /\  B  e.  D  /\  S  e.  _V )  ->  ( A F B )  =  S )
101, 9syl3an3 1205 1  |-  ( ( A  e.  C  /\  B  e.  D  /\  S  e.  H )  ->  ( A F B )  =  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    /\ w3a 920    = wceq 1285    e. wcel 1434   _Vcvv 2602  (class class class)co 5543    |-> cmpt2 5545
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3904  ax-pow 3956  ax-pr 3972  ax-setind 4288
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ne 2247  df-ral 2354  df-rex 2355  df-v 2604  df-sbc 2817  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-uni 3610  df-br 3794  df-opab 3848  df-id 4056  df-xp 4377  df-rel 4378  df-cnv 4379  df-co 4380  df-dm 4381  df-iota 4897  df-fun 4934  df-fv 4940  df-ov 5546  df-oprab 5547  df-mpt2 5548
This theorem is referenced by:  ovmpt2a  5662  ovmpt2g  5666  elovmpt2  5732  offval  5750  offval3  5792  fzoval  9235  eucalgval2  10579
  Copyright terms: Public domain W3C validator