ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovmpt2s Unicode version

Theorem ovmpt2s 5649
Description: Value of a function given by the "maps to" notation, expressed using explicit substitution. (Contributed by Mario Carneiro, 30-Apr-2015.)
Hypothesis
Ref Expression
ovmpt2s.3  |-  F  =  ( x  e.  C ,  y  e.  D  |->  R )
Assertion
Ref Expression
ovmpt2s  |-  ( ( A  e.  C  /\  B  e.  D  /\  [_ A  /  x ]_ [_ B  /  y ]_ R  e.  V )  ->  ( A F B )  =  [_ A  /  x ]_ [_ B  /  y ]_ R
)
Distinct variable groups:    x, y, A   
x, B, y    x, C, y    x, D, y
Allowed substitution hints:    R( x, y)    F( x, y)    V( x, y)

Proof of Theorem ovmpt2s
StepHypRef Expression
1 elex 2611 . . 3  |-  ( [_ A  /  x ]_ [_ B  /  y ]_ R  e.  V  ->  [_ A  /  x ]_ [_ B  /  y ]_ R  e.  _V )
2 nfcv 2220 . . . . 5  |-  F/_ x A
3 nfcv 2220 . . . . 5  |-  F/_ y A
4 nfcv 2220 . . . . 5  |-  F/_ y B
5 nfcsb1v 2939 . . . . . . 7  |-  F/_ x [_ A  /  x ]_ R
65nfel1 2230 . . . . . 6  |-  F/ x [_ A  /  x ]_ R  e.  _V
7 ovmpt2s.3 . . . . . . . . 9  |-  F  =  ( x  e.  C ,  y  e.  D  |->  R )
8 nfmpt21 5596 . . . . . . . . 9  |-  F/_ x
( x  e.  C ,  y  e.  D  |->  R )
97, 8nfcxfr 2217 . . . . . . . 8  |-  F/_ x F
10 nfcv 2220 . . . . . . . 8  |-  F/_ x
y
112, 9, 10nfov 5560 . . . . . . 7  |-  F/_ x
( A F y )
1211, 5nfeq 2227 . . . . . 6  |-  F/ x
( A F y )  =  [_ A  /  x ]_ R
136, 12nfim 1505 . . . . 5  |-  F/ x
( [_ A  /  x ]_ R  e.  _V  ->  ( A F y )  =  [_ A  /  x ]_ R )
14 nfcsb1v 2939 . . . . . . 7  |-  F/_ y [_ B  /  y ]_ [_ A  /  x ]_ R
1514nfel1 2230 . . . . . 6  |-  F/ y
[_ B  /  y ]_ [_ A  /  x ]_ R  e.  _V
16 nfmpt22 5597 . . . . . . . . 9  |-  F/_ y
( x  e.  C ,  y  e.  D  |->  R )
177, 16nfcxfr 2217 . . . . . . . 8  |-  F/_ y F
183, 17, 4nfov 5560 . . . . . . 7  |-  F/_ y
( A F B )
1918, 14nfeq 2227 . . . . . 6  |-  F/ y ( A F B )  =  [_ B  /  y ]_ [_ A  /  x ]_ R
2015, 19nfim 1505 . . . . 5  |-  F/ y ( [_ B  / 
y ]_ [_ A  /  x ]_ R  e.  _V  ->  ( A F B )  =  [_ B  /  y ]_ [_ A  /  x ]_ R )
21 csbeq1a 2917 . . . . . . 7  |-  ( x  =  A  ->  R  =  [_ A  /  x ]_ R )
2221eleq1d 2148 . . . . . 6  |-  ( x  =  A  ->  ( R  e.  _V  <->  [_ A  /  x ]_ R  e.  _V ) )
23 oveq1 5544 . . . . . . 7  |-  ( x  =  A  ->  (
x F y )  =  ( A F y ) )
2423, 21eqeq12d 2096 . . . . . 6  |-  ( x  =  A  ->  (
( x F y )  =  R  <->  ( A F y )  = 
[_ A  /  x ]_ R ) )
2522, 24imbi12d 232 . . . . 5  |-  ( x  =  A  ->  (
( R  e.  _V  ->  ( x F y )  =  R )  <-> 
( [_ A  /  x ]_ R  e.  _V  ->  ( A F y )  =  [_ A  /  x ]_ R ) ) )
26 csbeq1a 2917 . . . . . . 7  |-  ( y  =  B  ->  [_ A  /  x ]_ R  = 
[_ B  /  y ]_ [_ A  /  x ]_ R )
2726eleq1d 2148 . . . . . 6  |-  ( y  =  B  ->  ( [_ A  /  x ]_ R  e.  _V  <->  [_ B  /  y ]_ [_ A  /  x ]_ R  e.  _V )
)
28 oveq2 5545 . . . . . . 7  |-  ( y  =  B  ->  ( A F y )  =  ( A F B ) )
2928, 26eqeq12d 2096 . . . . . 6  |-  ( y  =  B  ->  (
( A F y )  =  [_ A  /  x ]_ R  <->  ( A F B )  =  [_ B  /  y ]_ [_ A  /  x ]_ R ) )
3027, 29imbi12d 232 . . . . 5  |-  ( y  =  B  ->  (
( [_ A  /  x ]_ R  e.  _V  ->  ( A F y )  =  [_ A  /  x ]_ R )  <-> 
( [_ B  /  y ]_ [_ A  /  x ]_ R  e.  _V  ->  ( A F B )  =  [_ B  /  y ]_ [_ A  /  x ]_ R ) ) )
317ovmpt4g 5648 . . . . . 6  |-  ( ( x  e.  C  /\  y  e.  D  /\  R  e.  _V )  ->  ( x F y )  =  R )
32313expia 1141 . . . . 5  |-  ( ( x  e.  C  /\  y  e.  D )  ->  ( R  e.  _V  ->  ( x F y )  =  R ) )
332, 3, 4, 13, 20, 25, 30, 32vtocl2gaf 2666 . . . 4  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( [_ B  / 
y ]_ [_ A  /  x ]_ R  e.  _V  ->  ( A F B )  =  [_ B  /  y ]_ [_ A  /  x ]_ R ) )
34 csbcomg 2930 . . . . 5  |-  ( ( A  e.  C  /\  B  e.  D )  ->  [_ A  /  x ]_ [_ B  /  y ]_ R  =  [_ B  /  y ]_ [_ A  /  x ]_ R )
3534eleq1d 2148 . . . 4  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( [_ A  /  x ]_ [_ B  / 
y ]_ R  e.  _V  <->  [_ B  /  y ]_ [_ A  /  x ]_ R  e.  _V )
)
3634eqeq2d 2093 . . . 4  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( ( A F B )  =  [_ A  /  x ]_ [_ B  /  y ]_ R  <->  ( A F B )  =  [_ B  / 
y ]_ [_ A  /  x ]_ R ) )
3733, 35, 363imtr4d 201 . . 3  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( [_ A  /  x ]_ [_ B  / 
y ]_ R  e.  _V  ->  ( A F B )  =  [_ A  /  x ]_ [_ B  /  y ]_ R
) )
381, 37syl5 32 . 2  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( [_ A  /  x ]_ [_ B  / 
y ]_ R  e.  V  ->  ( A F B )  =  [_ A  /  x ]_ [_ B  /  y ]_ R
) )
39383impia 1136 1  |-  ( ( A  e.  C  /\  B  e.  D  /\  [_ A  /  x ]_ [_ B  /  y ]_ R  e.  V )  ->  ( A F B )  =  [_ A  /  x ]_ [_ B  /  y ]_ R
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    /\ w3a 920    = wceq 1285    e. wcel 1434   _Vcvv 2602   [_csb 2909  (class class class)co 5537    |-> cmpt2 5539
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3898  ax-pow 3950  ax-pr 3966  ax-setind 4282
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ne 2247  df-ral 2354  df-rex 2355  df-v 2604  df-sbc 2817  df-csb 2910  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-pw 3386  df-sn 3406  df-pr 3407  df-op 3409  df-uni 3604  df-br 3788  df-opab 3842  df-id 4050  df-xp 4371  df-rel 4372  df-cnv 4373  df-co 4374  df-dm 4375  df-iota 4891  df-fun 4928  df-fv 4934  df-ov 5540  df-oprab 5541  df-mpt2 5542
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator