ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovshftex Unicode version

Theorem ovshftex 10559
Description: Existence of the result of applying shift. (Contributed by Jim Kingdon, 15-Aug-2021.)
Assertion
Ref Expression
ovshftex  |-  ( ( F  e.  V  /\  A  e.  CC )  ->  ( F  shift  A )  e.  _V )

Proof of Theorem ovshftex
Dummy variables  u  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 shftfvalg 10558 . . 3  |-  ( ( A  e.  CC  /\  F  e.  V )  ->  ( F  shift  A )  =  { <. z ,  w >.  |  (
z  e.  CC  /\  ( z  -  A
) F w ) } )
21ancoms 266 . 2  |-  ( ( F  e.  V  /\  A  e.  CC )  ->  ( F  shift  A )  =  { <. z ,  w >.  |  (
z  e.  CC  /\  ( z  -  A
) F w ) } )
3 cnex 7712 . . . 4  |-  CC  e.  _V
43a1i 9 . . 3  |-  ( ( F  e.  V  /\  A  e.  CC )  ->  CC  e.  _V )
5 rnexg 4774 . . . . 5  |-  ( F  e.  V  ->  ran  F  e.  _V )
65ad2antrr 479 . . . 4  |-  ( ( ( F  e.  V  /\  A  e.  CC )  /\  z  e.  CC )  ->  ran  F  e.  _V )
7 vex 2663 . . . . . . . 8  |-  u  e. 
_V
8 breq2 3903 . . . . . . . 8  |-  ( w  =  u  ->  (
( z  -  A
) F w  <->  ( z  -  A ) F u ) )
97, 8elab 2802 . . . . . . 7  |-  ( u  e.  { w  |  ( z  -  A
) F w }  <->  ( z  -  A ) F u )
10 simpr 109 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  z  e.  CC )  ->  z  e.  CC )
11 simpl 108 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  z  e.  CC )  ->  A  e.  CC )
1210, 11subcld 8041 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  z  e.  CC )  ->  ( z  -  A
)  e.  CC )
13 brelrng 4740 . . . . . . . . . 10  |-  ( ( ( z  -  A
)  e.  CC  /\  u  e.  _V  /\  (
z  -  A ) F u )  ->  u  e.  ran  F )
147, 13mp3an2 1288 . . . . . . . . 9  |-  ( ( ( z  -  A
)  e.  CC  /\  ( z  -  A
) F u )  ->  u  e.  ran  F )
1512, 14sylan 281 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  z  e.  CC )  /\  ( z  -  A ) F u )  ->  u  e.  ran  F )
1615ex 114 . . . . . . 7  |-  ( ( A  e.  CC  /\  z  e.  CC )  ->  ( ( z  -  A ) F u  ->  u  e.  ran  F ) )
179, 16syl5bi 151 . . . . . 6  |-  ( ( A  e.  CC  /\  z  e.  CC )  ->  ( u  e.  {
w  |  ( z  -  A ) F w }  ->  u  e.  ran  F ) )
1817ssrdv 3073 . . . . 5  |-  ( ( A  e.  CC  /\  z  e.  CC )  ->  { w  |  ( z  -  A ) F w }  C_  ran  F )
1918adantll 467 . . . 4  |-  ( ( ( F  e.  V  /\  A  e.  CC )  /\  z  e.  CC )  ->  { w  |  ( z  -  A
) F w }  C_ 
ran  F )
206, 19ssexd 4038 . . 3  |-  ( ( ( F  e.  V  /\  A  e.  CC )  /\  z  e.  CC )  ->  { w  |  ( z  -  A
) F w }  e.  _V )
214, 20opabex3d 5987 . 2  |-  ( ( F  e.  V  /\  A  e.  CC )  ->  { <. z ,  w >.  |  ( z  e.  CC  /\  ( z  -  A ) F w ) }  e.  _V )
222, 21eqeltrd 2194 1  |-  ( ( F  e.  V  /\  A  e.  CC )  ->  ( F  shift  A )  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1316    e. wcel 1465   {cab 2103   _Vcvv 2660    C_ wss 3041   class class class wbr 3899   {copab 3958   ran crn 4510  (class class class)co 5742   CCcc 7586    - cmin 7901    shift cshi 10554
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-coll 4013  ax-sep 4016  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-cnex 7679  ax-resscn 7680  ax-1cn 7681  ax-icn 7683  ax-addcl 7684  ax-addrcl 7685  ax-mulcl 7686  ax-addcom 7688  ax-addass 7690  ax-distr 7692  ax-i2m1 7693  ax-0id 7696  ax-rnegex 7697  ax-cnre 7699
This theorem depends on definitions:  df-bi 116  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-ral 2398  df-rex 2399  df-reu 2400  df-rab 2402  df-v 2662  df-sbc 2883  df-csb 2976  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-iun 3785  df-br 3900  df-opab 3960  df-mpt 3961  df-id 4185  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-res 4521  df-ima 4522  df-iota 5058  df-fun 5095  df-fn 5096  df-f 5097  df-f1 5098  df-fo 5099  df-f1o 5100  df-fv 5101  df-riota 5698  df-ov 5745  df-oprab 5746  df-mpo 5747  df-sub 7903  df-shft 10555
This theorem is referenced by:  2shfti  10571  climshftlemg  11039  climshft  11041  climshft2  11043  eftlub  11323
  Copyright terms: Public domain W3C validator