Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  peano4 Unicode version

Theorem peano4 4346
 Description: Two natural numbers are equal iff their successors are equal, i.e. the successor function is one-to-one. One of Peano's five postulates for arithmetic. Proposition 7.30(4) of [TakeutiZaring] p. 43. (Contributed by NM, 3-Sep-2003.)
Assertion
Ref Expression
peano4

Proof of Theorem peano4
StepHypRef Expression
1 suc11g 4308 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 102   wb 103   wceq 1285   wcel 1434   csuc 4128  com 4339 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-setind 4288 This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1687  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ral 2354  df-v 2604  df-dif 2976  df-un 2978  df-sn 3412  df-pr 3413  df-suc 4134 This theorem is referenced by:  frecabcl  6048
 Copyright terms: Public domain W3C validator