ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pitri3or Unicode version

Theorem pitri3or 6478
Description: Trichotomy for positive integers. (Contributed by Jim Kingdon, 21-Sep-2019.)
Assertion
Ref Expression
pitri3or  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  <N  B  \/  A  =  B  \/  B  <N  A ) )

Proof of Theorem pitri3or
StepHypRef Expression
1 pinn 6465 . . 3  |-  ( A  e.  N.  ->  A  e.  om )
2 pinn 6465 . . 3  |-  ( B  e.  N.  ->  B  e.  om )
3 nntri3or 6103 . . 3  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  e.  B  \/  A  =  B  \/  B  e.  A
) )
41, 2, 3syl2an 277 . 2  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  e.  B  \/  A  =  B  \/  B  e.  A
) )
5 ltpiord 6475 . . 3  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  <N  B  <->  A  e.  B ) )
6 biidd 165 . . 3  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  =  B  <-> 
A  =  B ) )
7 ltpiord 6475 . . . 4  |-  ( ( B  e.  N.  /\  A  e.  N. )  ->  ( B  <N  A  <->  B  e.  A ) )
87ancoms 259 . . 3  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( B  <N  A  <->  B  e.  A ) )
95, 6, 83orbi123d 1217 . 2  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( ( A  <N  B  \/  A  =  B  \/  B  <N  A )  <-> 
( A  e.  B  \/  A  =  B  \/  B  e.  A
) ) )
104, 9mpbird 160 1  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  <N  B  \/  A  =  B  \/  B  <N  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 101    <-> wb 102    \/ w3o 895    = wceq 1259    e. wcel 1409   class class class wbr 3792   omcom 4341   N.cnpi 6428    <N clti 6431
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3903  ax-nul 3911  ax-pow 3955  ax-pr 3972  ax-un 4198  ax-iinf 4339
This theorem depends on definitions:  df-bi 114  df-3or 897  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-v 2576  df-dif 2948  df-un 2950  df-in 2952  df-ss 2959  df-nul 3253  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-int 3644  df-br 3793  df-opab 3847  df-tr 3883  df-eprel 4054  df-iord 4131  df-on 4133  df-suc 4136  df-iom 4342  df-xp 4379  df-ni 6460  df-lti 6463
This theorem is referenced by:  nqtri3or  6552  caucvgprlemnkj  6822  caucvgprlemnbj  6823  caucvgprprlemnkj  6848  caucvgprprlemnbj  6849  caucvgsr  6944
  Copyright terms: Public domain W3C validator