![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pm2.43i | Unicode version |
Description: Inference absorbing redundant antecedent. (Contributed by NM, 5-Aug-1993.) (Proof shortened by O'Cat, 28-Nov-2008.) |
Ref | Expression |
---|---|
pm2.43i.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
pm2.43i |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | pm2.43i.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | mpd 13 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 |
This theorem is referenced by: sylc 61 impbid 127 ibi 174 anidms 389 pm2.13dc 813 hbequid 1447 equidqe 1466 equid 1630 ax10 1646 hbae 1647 vtoclgaf 2664 vtocl2gaf 2666 vtocl3gaf 2668 elinti 3653 copsexg 4007 nlimsucg 4317 tfisi 4336 vtoclr 4414 issref 4737 relresfld 4877 f1o2ndf1 5880 tfrlem9 5968 nndi 6130 mulcanpig 6587 lediv2a 8040 iseqid3s 9562 resqrexlemdecn 10036 ndvdssub 10474 nn0seqcvgd 10567 ax1hfs 10944 |
Copyright terms: Public domain | W3C validator |