Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm3.12dc Unicode version

Theorem pm3.12dc 900
 Description: Theorem *3.12 of [WhiteheadRussell] p. 111, but for decidable propositions. (Contributed by Jim Kingdon, 22-Apr-2018.)
Assertion
Ref Expression
pm3.12dc DECID DECID

Proof of Theorem pm3.12dc
StepHypRef Expression
1 pm3.11dc 899 . . . 4 DECID DECID
21imp 122 . . 3 DECID DECID
3 dcn 780 . . . . . 6 DECID DECID
4 dcn 780 . . . . . 6 DECID DECID
5 dcor 877 . . . . . 6 DECID DECID DECID
63, 4, 5syl2im 38 . . . . 5 DECID DECID DECID
7 dfordc 825 . . . . 5 DECID
86, 7syl6 33 . . . 4 DECID DECID
98imp 122 . . 3 DECID DECID
102, 9mpbird 165 . 2 DECID DECID
1110ex 113 1 DECID DECID
 Colors of variables: wff set class Syntax hints:   wn 3   wi 4   wa 102   wb 103   wo 662  DECID wdc 776 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663 This theorem depends on definitions:  df-bi 115  df-dc 777 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator