ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm3.43 Unicode version

Theorem pm3.43 544
Description: Theorem *3.43 (Comp) of [WhiteheadRussell] p. 113. (Contributed by NM, 3-Jan-2005.) (Revised by NM, 27-Nov-2013.)
Assertion
Ref Expression
pm3.43  |-  ( ( ( ph  ->  ps )  /\  ( ph  ->  ch ) )  ->  ( ph  ->  ( ps  /\  ch ) ) )

Proof of Theorem pm3.43
StepHypRef Expression
1 pm3.43i 262 . 2  |-  ( (
ph  ->  ps )  -> 
( ( ph  ->  ch )  ->  ( ph  ->  ( ps  /\  ch ) ) ) )
21imp 119 1  |-  ( ( ( ph  ->  ps )  /\  ( ph  ->  ch ) )  ->  ( ph  ->  ( ps  /\  ch ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 101
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105
This theorem is referenced by:  jcab  545  sbequilem  1735  eqvinc  2690  eqvincg  2691
  Copyright terms: Public domain W3C validator