ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm4.76 Unicode version

Theorem pm4.76 546
Description: Theorem *4.76 of [WhiteheadRussell] p. 121. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm4.76  |-  ( ( ( ph  ->  ps )  /\  ( ph  ->  ch ) )  <->  ( ph  ->  ( ps  /\  ch ) ) )

Proof of Theorem pm4.76
StepHypRef Expression
1 jcab 545 . 2  |-  ( (
ph  ->  ( ps  /\  ch ) )  <->  ( ( ph  ->  ps )  /\  ( ph  ->  ch )
) )
21bicomi 127 1  |-  ( ( ( ph  ->  ps )  /\  ( ph  ->  ch ) )  <->  ( ph  ->  ( ps  /\  ch ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 101    <-> wb 102
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105
This theorem depends on definitions:  df-bi 114
This theorem is referenced by:  sbanv  1785  fun11  4994
  Copyright terms: Public domain W3C validator