ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm4.82 Unicode version

Theorem pm4.82 868
Description: Theorem *4.82 of [WhiteheadRussell] p. 122. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm4.82  |-  ( ( ( ph  ->  ps )  /\  ( ph  ->  -. 
ps ) )  <->  -.  ph )

Proof of Theorem pm4.82
StepHypRef Expression
1 pm2.65 595 . . 3  |-  ( (
ph  ->  ps )  -> 
( ( ph  ->  -. 
ps )  ->  -.  ph ) )
21imp 119 . 2  |-  ( ( ( ph  ->  ps )  /\  ( ph  ->  -. 
ps ) )  ->  -.  ph )
3 pm2.21 557 . . 3  |-  ( -. 
ph  ->  ( ph  ->  ps ) )
4 pm2.21 557 . . 3  |-  ( -. 
ph  ->  ( ph  ->  -. 
ps ) )
53, 4jca 294 . 2  |-  ( -. 
ph  ->  ( ( ph  ->  ps )  /\  ( ph  ->  -.  ps )
) )
62, 5impbii 121 1  |-  ( ( ( ph  ->  ps )  /\  ( ph  ->  -. 
ps ) )  <->  -.  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 101    <-> wb 102
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555
This theorem depends on definitions:  df-bi 114
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator