![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pm5.21nii | Unicode version |
Description: Eliminate an antecedent implied by each side of a biconditional. (Contributed by NM, 21-May-1999.) (Revised by Mario Carneiro, 31-Jan-2015.) |
Ref | Expression |
---|---|
pm5.21ni.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
pm5.21ni.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
pm5.21nii.3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
pm5.21nii |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.21ni.1 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | pm5.21nii.3 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl 14 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3 | ibi 174 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
5 | pm5.21ni.2 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() | |
6 | 5, 2 | syl 14 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | 6 | ibir 175 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
8 | 4, 7 | impbii 124 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 |
This theorem depends on definitions: df-bi 115 |
This theorem is referenced by: anxordi 1332 elrabf 2748 sbcco 2837 sbc5 2839 sbcan 2857 sbcor 2859 sbcal 2866 sbcex2 2868 sbcel1v 2877 eldif 2983 elun 3114 elin 3156 eluni 3612 eliun 3690 elopab 4021 opelopabsb 4023 opeliunxp 4421 opeliunxp2 4504 elxp4 4838 elxp5 4839 fsn2 5369 isocnv2 5483 elxp6 5827 elxp7 5828 brtpos2 5900 tpostpos 5913 ecdmn0m 6214 bren 6294 elinp 6726 recexprlemell 6874 recexprlemelu 6875 gt0srpr 6987 ltresr 7069 eluz2 8706 elfz2 9112 rexanuz2 10015 even2n 10418 infssuzex 10489 |
Copyright terms: Public domain | W3C validator |