ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pncan Unicode version

Theorem pncan 7451
Description: Cancellation law for subtraction. (Contributed by NM, 10-May-2004.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
pncan  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B )  -  B
)  =  A )

Proof of Theorem pncan
StepHypRef Expression
1 simpr 108 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  B  e.  CC )
2 simpl 107 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  A  e.  CC )
31, 2addcomd 7396 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( B  +  A
)  =  ( A  +  B ) )
4 addcl 7230 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B
)  e.  CC )
5 subadd 7448 . . 3  |-  ( ( ( A  +  B
)  e.  CC  /\  B  e.  CC  /\  A  e.  CC )  ->  (
( ( A  +  B )  -  B
)  =  A  <->  ( B  +  A )  =  ( A  +  B ) ) )
64, 1, 2, 5syl3anc 1170 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A  +  B )  -  B )  =  A  <-> 
( B  +  A
)  =  ( A  +  B ) ) )
73, 6mpbird 165 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B )  -  B
)  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1285    e. wcel 1434  (class class class)co 5564   CCcc 7111    + caddc 7116    - cmin 7416
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3916  ax-pow 3968  ax-pr 3992  ax-setind 4308  ax-resscn 7200  ax-1cn 7201  ax-icn 7203  ax-addcl 7204  ax-addrcl 7205  ax-mulcl 7206  ax-addcom 7208  ax-addass 7210  ax-distr 7212  ax-i2m1 7213  ax-0id 7216  ax-rnegex 7217  ax-cnre 7219
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2612  df-sbc 2825  df-dif 2984  df-un 2986  df-in 2988  df-ss 2995  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-uni 3622  df-br 3806  df-opab 3860  df-id 4076  df-xp 4397  df-rel 4398  df-cnv 4399  df-co 4400  df-dm 4401  df-iota 4917  df-fun 4954  df-fv 4960  df-riota 5520  df-ov 5567  df-oprab 5568  df-mpt2 5569  df-sub 7418
This theorem is referenced by:  pncan2  7452  addsubass  7455  pncan3oi  7461  subid1  7465  nppcan2  7476  pncand  7557  nn1m1nn  8194  nnsub  8214  elnn0nn  8467  zrevaddcl  8552  nzadd  8554  elz2  8570  qrevaddcl  8880  irradd  8882  fzrev3  9250  elfzp1b  9260  fzrevral3  9270  fzval3  9360  subsq2  9749  bcp1nk  9856  bcp1m1  9859  bcpasc  9860  shftlem  9923  shftval5  9936  dvdsadd  10464  prmind2  10727
  Copyright terms: Public domain W3C validator