ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pnfnlt Unicode version

Theorem pnfnlt 8938
Description: No extended real is greater than plus infinity. (Contributed by NM, 15-Oct-2005.)
Assertion
Ref Expression
pnfnlt  |-  ( A  e.  RR*  ->  -. +oo  <  A )

Proof of Theorem pnfnlt
StepHypRef Expression
1 pnfnre 7222 . . . . . . 7  |- +oo  e/  RR
21neli 2342 . . . . . 6  |-  -. +oo  e.  RR
32intnanr 873 . . . . 5  |-  -.  ( +oo  e.  RR  /\  A  e.  RR )
43intnanr 873 . . . 4  |-  -.  (
( +oo  e.  RR  /\  A  e.  RR )  /\ +oo  <RR  A )
5 pnfnemnf 7235 . . . . . 6  |- +oo  =/= -oo
65neii 2248 . . . . 5  |-  -. +oo  = -oo
76intnanr 873 . . . 4  |-  -.  ( +oo  = -oo  /\  A  = +oo )
84, 7pm3.2ni 760 . . 3  |-  -.  (
( ( +oo  e.  RR  /\  A  e.  RR )  /\ +oo  <RR  A )  \/  ( +oo  = -oo  /\  A  = +oo ) )
92intnanr 873 . . . 4  |-  -.  ( +oo  e.  RR  /\  A  = +oo )
106intnanr 873 . . . 4  |-  -.  ( +oo  = -oo  /\  A  e.  RR )
119, 10pm3.2ni 760 . . 3  |-  -.  (
( +oo  e.  RR  /\  A  = +oo )  \/  ( +oo  = -oo  /\  A  e.  RR ) )
128, 11pm3.2ni 760 . 2  |-  -.  (
( ( ( +oo  e.  RR  /\  A  e.  RR )  /\ +oo  <RR  A )  \/  ( +oo  = -oo  /\  A  = +oo ) )  \/  ( ( +oo  e.  RR  /\  A  = +oo )  \/  ( +oo  = -oo  /\  A  e.  RR ) ) )
13 pnfxr 7233 . . 3  |- +oo  e.  RR*
14 ltxr 8927 . . 3  |-  ( ( +oo  e.  RR*  /\  A  e.  RR* )  ->  ( +oo  <  A  <->  ( (
( ( +oo  e.  RR  /\  A  e.  RR )  /\ +oo  <RR  A )  \/  ( +oo  = -oo  /\  A  = +oo ) )  \/  (
( +oo  e.  RR  /\  A  = +oo )  \/  ( +oo  = -oo  /\  A  e.  RR ) ) ) ) )
1513, 14mpan 415 . 2  |-  ( A  e.  RR*  ->  ( +oo  <  A  <->  ( ( ( ( +oo  e.  RR  /\  A  e.  RR )  /\ +oo  <RR  A )  \/  ( +oo  = -oo  /\  A  = +oo ) )  \/  (
( +oo  e.  RR  /\  A  = +oo )  \/  ( +oo  = -oo  /\  A  e.  RR ) ) ) ) )
1612, 15mtbiri 633 1  |-  ( A  e.  RR*  ->  -. +oo  <  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    <-> wb 103    \/ wo 662    = wceq 1285    e. wcel 1434   class class class wbr 3793   RRcr 7042    <RR cltrr 7047   +oocpnf 7212   -oocmnf 7213   RR*cxr 7214    < clt 7215
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3904  ax-pow 3956  ax-pr 3972  ax-un 4196  ax-cnex 7129  ax-resscn 7130
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ne 2247  df-nel 2341  df-ral 2354  df-rex 2355  df-rab 2358  df-v 2604  df-un 2978  df-in 2980  df-ss 2987  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-uni 3610  df-br 3794  df-opab 3848  df-xp 4377  df-pnf 7217  df-mnf 7218  df-xr 7219  df-ltxr 7220
This theorem is referenced by:  pnfge  8940  xrltnsym  8944  xrlttr  8946  xrltso  8947  xltnegi  8978  qbtwnxr  9344
  Copyright terms: Public domain W3C validator