ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prarloclem5 Unicode version

Theorem prarloclem5 7301
Description: A substitution of zero for  y and  N minus two for  x. Lemma for prarloc 7304. (Contributed by Jim Kingdon, 4-Nov-2019.)
Assertion
Ref Expression
prarloclem5  |-  ( ( ( <. L ,  U >.  e.  P.  /\  A  e.  L )  /\  ( N  e.  N.  /\  P  e.  Q.  /\  1o  <N  N )  /\  ( A  +Q  ( [ <. N ,  1o >. ]  ~Q  .Q  P ) )  e.  U )  ->  E. x  e.  om  E. y  e. 
om  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) )
Distinct variable groups:    x, A, y   
x, L, y    x, N    x, P, y    x, U, y
Allowed substitution hint:    N( y)

Proof of Theorem prarloclem5
StepHypRef Expression
1 prarloclemn 7300 . . . 4  |-  ( ( N  e.  N.  /\  1o  <N  N )  ->  E. x  e.  om  ( 2o  +o  x
)  =  N )
213adant2 1000 . . 3  |-  ( ( N  e.  N.  /\  P  e.  Q.  /\  1o  <N  N )  ->  E. x  e.  om  ( 2o  +o  x )  =  N )
323ad2ant2 1003 . 2  |-  ( ( ( <. L ,  U >.  e.  P.  /\  A  e.  L )  /\  ( N  e.  N.  /\  P  e.  Q.  /\  1o  <N  N )  /\  ( A  +Q  ( [ <. N ,  1o >. ]  ~Q  .Q  P ) )  e.  U )  ->  E. x  e.  om  ( 2o  +o  x )  =  N )
4 elprnql 7282 . . . . . . 7  |-  ( (
<. L ,  U >.  e. 
P.  /\  A  e.  L )  ->  A  e.  Q. )
543ad2ant1 1002 . . . . . 6  |-  ( ( ( <. L ,  U >.  e.  P.  /\  A  e.  L )  /\  ( N  e.  N.  /\  P  e.  Q.  /\  1o  <N  N )  /\  ( A  +Q  ( [ <. N ,  1o >. ]  ~Q  .Q  P ) )  e.  U )  ->  A  e.  Q. )
6 simp22 1015 . . . . . 6  |-  ( ( ( <. L ,  U >.  e.  P.  /\  A  e.  L )  /\  ( N  e.  N.  /\  P  e.  Q.  /\  1o  <N  N )  /\  ( A  +Q  ( [ <. N ,  1o >. ]  ~Q  .Q  P ) )  e.  U )  ->  P  e.  Q. )
7 nqnq0 7242 . . . . . . . . 9  |-  Q.  C_ Q0
87sseli 3088 . . . . . . . 8  |-  ( A  e.  Q.  ->  A  e. Q0 )
9 nq0a0 7258 . . . . . . . 8  |-  ( A  e. Q0  ->  ( A +Q0 0Q0 )  =  A )
108, 9syl 14 . . . . . . 7  |-  ( A  e.  Q.  ->  ( A +Q0 0Q0 )  =  A )
11 df-0nq0 7227 . . . . . . . . . 10  |- 0Q0  =  [ <. (/) ,  1o >. ] ~Q0
1211oveq1i 5777 . . . . . . . . 9  |-  (0Q0 ·Q0 
P )  =  ( [ <. (/) ,  1o >. ] ~Q0 ·Q0 
P )
137sseli 3088 . . . . . . . . . 10  |-  ( P  e.  Q.  ->  P  e. Q0 )
14 nq0m0r 7257 . . . . . . . . . 10  |-  ( P  e. Q0  ->  (0Q0 ·Q0  P )  = 0Q0 )
1513, 14syl 14 . . . . . . . . 9  |-  ( P  e.  Q.  ->  (0Q0 ·Q0 
P )  = 0Q0 )
1612, 15syl5reqr 2185 . . . . . . . 8  |-  ( P  e.  Q.  -> 0Q0  =  ( [ <. (/)
,  1o >. ] ~Q0 ·Q0  P ) )
1716oveq2d 5783 . . . . . . 7  |-  ( P  e.  Q.  ->  ( A +Q0 0Q0 )  =  ( A +Q0  ( [ <. (/) ,  1o >. ] ~Q0 ·Q0 
P ) ) )
1810, 17sylan9req 2191 . . . . . 6  |-  ( ( A  e.  Q.  /\  P  e.  Q. )  ->  A  =  ( A +Q0  ( [ <. (/) ,  1o >. ] ~Q0 ·Q0 
P ) ) )
195, 6, 18syl2anc 408 . . . . 5  |-  ( ( ( <. L ,  U >.  e.  P.  /\  A  e.  L )  /\  ( N  e.  N.  /\  P  e.  Q.  /\  1o  <N  N )  /\  ( A  +Q  ( [ <. N ,  1o >. ]  ~Q  .Q  P ) )  e.  U )  ->  A  =  ( A +Q0  ( [ <. (/) ,  1o >. ] ~Q0 ·Q0  P )
) )
20 simp1r 1006 . . . . 5  |-  ( ( ( <. L ,  U >.  e.  P.  /\  A  e.  L )  /\  ( N  e.  N.  /\  P  e.  Q.  /\  1o  <N  N )  /\  ( A  +Q  ( [ <. N ,  1o >. ]  ~Q  .Q  P ) )  e.  U )  ->  A  e.  L )
2119, 20eqeltrrd 2215 . . . 4  |-  ( ( ( <. L ,  U >.  e.  P.  /\  A  e.  L )  /\  ( N  e.  N.  /\  P  e.  Q.  /\  1o  <N  N )  /\  ( A  +Q  ( [ <. N ,  1o >. ]  ~Q  .Q  P ) )  e.  U )  ->  ( A +Q0  ( [ <. (/) ,  1o >. ] ~Q0 ·Q0 
P ) )  e.  L )
22 2onn 6410 . . . . . . . . . . . . . . 15  |-  2o  e.  om
23 nna0r 6367 . . . . . . . . . . . . . . 15  |-  ( 2o  e.  om  ->  ( (/) 
+o  2o )  =  2o )
2422, 23ax-mp 5 . . . . . . . . . . . . . 14  |-  ( (/)  +o  2o )  =  2o
2524oveq1i 5777 . . . . . . . . . . . . 13  |-  ( (
(/)  +o  2o )  +o  x )  =  ( 2o  +o  x )
2625eqeq1i 2145 . . . . . . . . . . . 12  |-  ( ( ( (/)  +o  2o )  +o  x )  =  N  <->  ( 2o  +o  x )  =  N )
2726biimpri 132 . . . . . . . . . . 11  |-  ( ( 2o  +o  x )  =  N  ->  (
( (/)  +o  2o )  +o  x )  =  N )
2827opeq1d 3706 . . . . . . . . . 10  |-  ( ( 2o  +o  x )  =  N  ->  <. (
( (/)  +o  2o )  +o  x ) ,  1o >.  =  <. N ,  1o >. )
2928eceq1d 6458 . . . . . . . . 9  |-  ( ( 2o  +o  x )  =  N  ->  [ <. ( ( (/)  +o  2o )  +o  x ) ,  1o >. ]  ~Q  =  [ <. N ,  1o >. ]  ~Q  )
3029oveq1d 5782 . . . . . . . 8  |-  ( ( 2o  +o  x )  =  N  ->  ( [ <. ( ( (/)  +o  2o )  +o  x
) ,  1o >. ]  ~Q  .Q  P )  =  ( [ <. N ,  1o >. ]  ~Q  .Q  P ) )
3130oveq2d 5783 . . . . . . 7  |-  ( ( 2o  +o  x )  =  N  ->  ( A  +Q  ( [ <. ( ( (/)  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P ) )  =  ( A  +Q  ( [ <. N ,  1o >. ]  ~Q  .Q  P
) ) )
3231eleq1d 2206 . . . . . 6  |-  ( ( 2o  +o  x )  =  N  ->  (
( A  +Q  ( [ <. ( ( (/)  +o  2o )  +o  x
) ,  1o >. ]  ~Q  .Q  P ) )  e.  U  <->  ( A  +Q  ( [ <. N ,  1o >. ]  ~Q  .Q  P ) )  e.  U ) )
3332biimprcd 159 . . . . 5  |-  ( ( A  +Q  ( [
<. N ,  1o >. ]  ~Q  .Q  P ) )  e.  U  -> 
( ( 2o  +o  x )  =  N  ->  ( A  +Q  ( [ <. ( ( (/)  +o  2o )  +o  x
) ,  1o >. ]  ~Q  .Q  P ) )  e.  U ) )
34333ad2ant3 1004 . . . 4  |-  ( ( ( <. L ,  U >.  e.  P.  /\  A  e.  L )  /\  ( N  e.  N.  /\  P  e.  Q.  /\  1o  <N  N )  /\  ( A  +Q  ( [ <. N ,  1o >. ]  ~Q  .Q  P ) )  e.  U )  ->  (
( 2o  +o  x
)  =  N  -> 
( A  +Q  ( [ <. ( ( (/)  +o  2o )  +o  x
) ,  1o >. ]  ~Q  .Q  P ) )  e.  U ) )
35 peano1 4503 . . . . 5  |-  (/)  e.  om
36 opeq1 3700 . . . . . . . . . . 11  |-  ( y  =  (/)  ->  <. y ,  1o >.  =  <. (/)
,  1o >. )
3736eceq1d 6458 . . . . . . . . . 10  |-  ( y  =  (/)  ->  [ <. y ,  1o >. ] ~Q0  =  [ <. (/) ,  1o >. ] ~Q0  )
3837oveq1d 5782 . . . . . . . . 9  |-  ( y  =  (/)  ->  ( [
<. y ,  1o >. ] ~Q0 ·Q0 
P )  =  ( [ <. (/) ,  1o >. ] ~Q0 ·Q0 
P ) )
3938oveq2d 5783 . . . . . . . 8  |-  ( y  =  (/)  ->  ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P )
)  =  ( A +Q0  ( [ <. (/) ,  1o >. ] ~Q0 ·Q0 
P ) ) )
4039eleq1d 2206 . . . . . . 7  |-  ( y  =  (/)  ->  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  <->  ( A +Q0  ( [
<. (/) ,  1o >. ] ~Q0 ·Q0 
P ) )  e.  L ) )
41 oveq1 5774 . . . . . . . . . . . . 13  |-  ( y  =  (/)  ->  ( y  +o  2o )  =  ( (/)  +o  2o ) )
4241oveq1d 5782 . . . . . . . . . . . 12  |-  ( y  =  (/)  ->  ( ( y  +o  2o )  +o  x )  =  ( ( (/)  +o  2o )  +o  x ) )
4342opeq1d 3706 . . . . . . . . . . 11  |-  ( y  =  (/)  ->  <. (
( y  +o  2o )  +o  x ) ,  1o >.  =  <. ( ( (/)  +o  2o )  +o  x ) ,  1o >. )
4443eceq1d 6458 . . . . . . . . . 10  |-  ( y  =  (/)  ->  [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  =  [ <. ( ( (/)  +o  2o )  +o  x
) ,  1o >. ]  ~Q  )
4544oveq1d 5782 . . . . . . . . 9  |-  ( y  =  (/)  ->  ( [
<. ( ( y  +o  2o )  +o  x
) ,  1o >. ]  ~Q  .Q  P )  =  ( [ <. ( ( (/)  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P ) )
4645oveq2d 5783 . . . . . . . 8  |-  ( y  =  (/)  ->  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P ) )  =  ( A  +Q  ( [ <. ( ( (/)  +o  2o )  +o  x
) ,  1o >. ]  ~Q  .Q  P ) ) )
4746eleq1d 2206 . . . . . . 7  |-  ( y  =  (/)  ->  ( ( A  +Q  ( [
<. ( ( y  +o  2o )  +o  x
) ,  1o >. ]  ~Q  .Q  P ) )  e.  U  <->  ( A  +Q  ( [ <. (
( (/)  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P ) )  e.  U ) )
4840, 47anbi12d 464 . . . . . 6  |-  ( y  =  (/)  ->  ( ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
)  <->  ( ( A +Q0  ( [ <. (/) ,  1o >. ] ~Q0 ·Q0 
P ) )  e.  L  /\  ( A  +Q  ( [ <. ( ( (/)  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P ) )  e.  U ) ) )
4948rspcev 2784 . . . . 5  |-  ( (
(/)  e.  om  /\  (
( A +Q0  ( [ <. (/) ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( ( (/)  +o  2o )  +o  x
) ,  1o >. ]  ~Q  .Q  P ) )  e.  U ) )  ->  E. y  e.  om  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) )
5035, 49mpan 420 . . . 4  |-  ( ( ( A +Q0  ( [ <. (/) ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( ( (/)  +o  2o )  +o  x
) ,  1o >. ]  ~Q  .Q  P ) )  e.  U )  ->  E. y  e.  om  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) )
5121, 34, 50syl6an 1410 . . 3  |-  ( ( ( <. L ,  U >.  e.  P.  /\  A  e.  L )  /\  ( N  e.  N.  /\  P  e.  Q.  /\  1o  <N  N )  /\  ( A  +Q  ( [ <. N ,  1o >. ]  ~Q  .Q  P ) )  e.  U )  ->  (
( 2o  +o  x
)  =  N  ->  E. y  e.  om  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) ) )
5251reximdv 2531 . 2  |-  ( ( ( <. L ,  U >.  e.  P.  /\  A  e.  L )  /\  ( N  e.  N.  /\  P  e.  Q.  /\  1o  <N  N )  /\  ( A  +Q  ( [ <. N ,  1o >. ]  ~Q  .Q  P ) )  e.  U )  ->  ( E. x  e.  om  ( 2o  +o  x
)  =  N  ->  E. x  e.  om  E. y  e.  om  (
( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) ) )
533, 52mpd 13 1  |-  ( ( ( <. L ,  U >.  e.  P.  /\  A  e.  L )  /\  ( N  e.  N.  /\  P  e.  Q.  /\  1o  <N  N )  /\  ( A  +Q  ( [ <. N ,  1o >. ]  ~Q  .Q  P ) )  e.  U )  ->  E. x  e.  om  E. y  e. 
om  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 962    = wceq 1331    e. wcel 1480   E.wrex 2415   (/)c0 3358   <.cop 3525   class class class wbr 3924   omcom 4499  (class class class)co 5767   1oc1o 6299   2oc2o 6300    +o coa 6303   [cec 6420   N.cnpi 7073    <N clti 7076    ~Q ceq 7080   Q.cnq 7081    +Q cplq 7083    .Q cmq 7084   ~Q0 ceq0 7087  Q0cnq0 7088  0Q0c0q0 7089   +Q0 cplq0 7090   ·Q0 cmq0 7091   P.cnp 7092
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-eprel 4206  df-id 4210  df-iord 4283  df-on 4285  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-irdg 6260  df-1o 6306  df-2o 6307  df-oadd 6310  df-omul 6311  df-er 6422  df-ec 6424  df-qs 6428  df-ni 7105  df-mi 7107  df-lti 7108  df-enq 7148  df-nqqs 7149  df-enq0 7225  df-nq0 7226  df-0nq0 7227  df-plq0 7228  df-mq0 7229  df-inp 7267
This theorem is referenced by:  prarloclem  7302
  Copyright terms: Public domain W3C validator