ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prarloclemcalc Unicode version

Theorem prarloclemcalc 6658
Description: Some calculations for prarloc 6659. (Contributed by Jim Kingdon, 26-Oct-2019.)
Assertion
Ref Expression
prarloclemcalc  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  B  <Q  ( A  +Q  P
) )

Proof of Theorem prarloclemcalc
StepHypRef Expression
1 simprll 497 . . . . 5  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  Q  e.  Q. )
2 nqnq0a 6610 . . . . 5  |-  ( ( Q  e.  Q.  /\  Q  e.  Q. )  ->  ( Q  +Q  Q
)  =  ( Q +Q0  Q
) )
31, 1, 2syl2anc 397 . . . 4  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  ( Q  +Q  Q )  =  ( Q +Q0  Q ) )
43oveq2d 5556 . . 3  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  ( A +Q0  ( Q  +Q  Q ) )  =  ( A +Q0  ( Q +Q0  Q ) ) )
5 simpll 489 . . . . 5  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q ) ) )
6 simprrl 499 . . . . . 6  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  X  e.  Q. )
7 simprrr 500 . . . . . . . 8  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  M  e.  om )
8 1pi 6471 . . . . . . . . . . 11  |-  1o  e.  N.
9 opelxpi 4404 . . . . . . . . . . 11  |-  ( ( M  e.  om  /\  1o  e.  N. )  ->  <. M ,  1o >.  e.  ( om  X.  N. ) )
108, 9mpan2 409 . . . . . . . . . 10  |-  ( M  e.  om  ->  <. M ,  1o >.  e.  ( om 
X.  N. ) )
11 enq0ex 6595 . . . . . . . . . . 11  |- ~Q0  e.  _V
1211ecelqsi 6191 . . . . . . . . . 10  |-  ( <. M ,  1o >.  e.  ( om  X.  N. )  ->  [ <. M ,  1o >. ] ~Q0  e.  ( ( om  X.  N. ) /. ~Q0  ) )
1310, 12syl 14 . . . . . . . . 9  |-  ( M  e.  om  ->  [ <. M ,  1o >. ] ~Q0  e.  ( ( om 
X.  N. ) /. ~Q0  ) )
14 df-nq0 6581 . . . . . . . . 9  |- Q0  =  ( ( om 
X.  N. ) /. ~Q0  )
1513, 14syl6eleqr 2147 . . . . . . . 8  |-  ( M  e.  om  ->  [ <. M ,  1o >. ] ~Q0  e. Q0 )
167, 15syl 14 . . . . . . 7  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  [ <. M ,  1o >. ] ~Q0  e. Q0 )
17 nqnq0 6597 . . . . . . . 8  |-  Q.  C_ Q0
1817, 1sseldi 2971 . . . . . . 7  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  Q  e. Q0 )
19 mulclnq0 6608 . . . . . . 7  |-  ( ( [ <. M ,  1o >. ] ~Q0  e. Q0  /\  Q  e. Q0 )  ->  ( [ <. M ,  1o >. ] ~Q0 ·Q0 
Q )  e. Q0 )
2016, 18, 19syl2anc 397 . . . . . 6  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )  e. Q0 )
21 nqpnq0nq 6609 . . . . . 6  |-  ( ( X  e.  Q.  /\  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )  e. Q0 )  ->  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q ) )  e.  Q. )
226, 20, 21syl2anc 397 . . . . 5  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  e.  Q. )
235, 22eqeltrd 2130 . . . 4  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  A  e.  Q. )
24 addclnq 6531 . . . . 5  |-  ( ( Q  e.  Q.  /\  Q  e.  Q. )  ->  ( Q  +Q  Q
)  e.  Q. )
251, 1, 24syl2anc 397 . . . 4  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  ( Q  +Q  Q )  e. 
Q. )
26 nqnq0a 6610 . . . 4  |-  ( ( A  e.  Q.  /\  ( Q  +Q  Q
)  e.  Q. )  ->  ( A  +Q  ( Q  +Q  Q ) )  =  ( A +Q0  ( Q  +Q  Q
) ) )
2723, 25, 26syl2anc 397 . . 3  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  ( A  +Q  ( Q  +Q  Q ) )  =  ( A +Q0  ( Q  +Q  Q
) ) )
28 simplr 490 . . . . . 6  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )
29 2onn 6125 . . . . . . . . . . . . . 14  |-  2o  e.  om
30 2on0 6041 . . . . . . . . . . . . . 14  |-  2o  =/=  (/)
31 elni 6464 . . . . . . . . . . . . . 14  |-  ( 2o  e.  N.  <->  ( 2o  e.  om  /\  2o  =/=  (/) ) )
3229, 30, 31mpbir2an 860 . . . . . . . . . . . . 13  |-  2o  e.  N.
33 nnppipi 6499 . . . . . . . . . . . . 13  |-  ( ( M  e.  om  /\  2o  e.  N. )  -> 
( M  +o  2o )  e.  N. )
3432, 33mpan2 409 . . . . . . . . . . . 12  |-  ( M  e.  om  ->  ( M  +o  2o )  e. 
N. )
35 opelxpi 4404 . . . . . . . . . . . 12  |-  ( ( ( M  +o  2o )  e.  N.  /\  1o  e.  N. )  ->  <. ( M  +o  2o ) ,  1o >.  e.  ( N.  X.  N. ) )
3634, 8, 35sylancl 398 . . . . . . . . . . 11  |-  ( M  e.  om  ->  <. ( M  +o  2o ) ,  1o >.  e.  ( N.  X.  N. ) )
37 enqex 6516 . . . . . . . . . . . 12  |-  ~Q  e.  _V
3837ecelqsi 6191 . . . . . . . . . . 11  |-  ( <.
( M  +o  2o ) ,  1o >.  e.  ( N.  X.  N. )  ->  [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  e.  ( ( N.  X.  N. ) /.  ~Q  ) )
3936, 38syl 14 . . . . . . . . . 10  |-  ( M  e.  om  ->  [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  e.  ( ( N.  X.  N. ) /.  ~Q  )
)
40 df-nqqs 6504 . . . . . . . . . 10  |-  Q.  =  ( ( N.  X.  N. ) /.  ~Q  )
4139, 40syl6eleqr 2147 . . . . . . . . 9  |-  ( M  e.  om  ->  [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  e.  Q. )
427, 41syl 14 . . . . . . . 8  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  e.  Q. )
43 mulclnq 6532 . . . . . . . 8  |-  ( ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  e.  Q.  /\  Q  e.  Q. )  ->  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q )  e.  Q. )
4442, 1, 43syl2anc 397 . . . . . . 7  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q )  e.  Q. )
45 nqnq0a 6610 . . . . . . 7  |-  ( ( X  e.  Q.  /\  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q )  e.  Q. )  -> 
( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) )  =  ( X +Q0  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )
466, 44, 45syl2anc 397 . . . . . 6  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) )  =  ( X +Q0  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )
47 nqnq0m 6611 . . . . . . . . 9  |-  ( ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  e.  Q.  /\  Q  e.  Q. )  ->  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q )  =  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q ·Q0  Q ) )
4842, 1, 47syl2anc 397 . . . . . . . 8  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q )  =  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q ·Q0  Q )
)
49 nqnq0pi 6594 . . . . . . . . . . 11  |-  ( ( ( M  +o  2o )  e.  N.  /\  1o  e.  N. )  ->  [ <. ( M  +o  2o ) ,  1o >. ] ~Q0  =  [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  )
5034, 8, 49sylancl 398 . . . . . . . . . 10  |-  ( M  e.  om  ->  [ <. ( M  +o  2o ) ,  1o >. ] ~Q0  =  [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  )
517, 50syl 14 . . . . . . . . 9  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  [ <. ( M  +o  2o ) ,  1o >. ] ~Q0  =  [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  )
5251oveq1d 5555 . . . . . . . 8  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  ( [ <. ( M  +o  2o ) ,  1o >. ] ~Q0 ·Q0 
Q )  =  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q ·Q0  Q ) )
5348, 52eqtr4d 2091 . . . . . . 7  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q )  =  ( [ <. ( M  +o  2o ) ,  1o >. ] ~Q0 ·Q0  Q ) )
5453oveq2d 5556 . . . . . 6  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  ( X +Q0  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) )  =  ( X +Q0  ( [ <. ( M  +o  2o ) ,  1o >. ] ~Q0 ·Q0 
Q ) ) )
5528, 46, 543eqtrd 2092 . . . . 5  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  B  =  ( X +Q0  ( [ <. ( M  +o  2o ) ,  1o >. ] ~Q0 ·Q0  Q ) ) )
56 nnanq0 6614 . . . . . . . . . 10  |-  ( ( M  e.  om  /\  2o  e.  om  /\  1o  e.  N. )  ->  [ <. ( M  +o  2o ) ,  1o >. ] ~Q0  =  ( [ <. M ,  1o >. ] ~Q0 +Q0  [ <. 2o ,  1o >. ] ~Q0  )
)
578, 56mp3an3 1232 . . . . . . . . 9  |-  ( ( M  e.  om  /\  2o  e.  om )  ->  [ <. ( M  +o  2o ) ,  1o >. ] ~Q0  =  ( [ <. M ,  1o >. ] ~Q0 +Q0  [ <. 2o ,  1o >. ] ~Q0  ) )
587, 29, 57sylancl 398 . . . . . . . 8  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  [ <. ( M  +o  2o ) ,  1o >. ] ~Q0  =  ( [ <. M ,  1o >. ] ~Q0 +Q0  [ <. 2o ,  1o >. ] ~Q0  )
)
5958oveq1d 5555 . . . . . . 7  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  ( [ <. ( M  +o  2o ) ,  1o >. ] ~Q0 ·Q0 
Q )  =  ( ( [ <. M ,  1o >. ] ~Q0 +Q0  [ <. 2o ,  1o >. ] ~Q0  ) ·Q0  Q ) )
60 opelxpi 4404 . . . . . . . . . . . 12  |-  ( ( 2o  e.  om  /\  1o  e.  N. )  ->  <. 2o ,  1o >.  e.  ( om  X.  N. ) )
6129, 8, 60mp2an 410 . . . . . . . . . . 11  |-  <. 2o ,  1o >.  e.  ( om 
X.  N. )
6211ecelqsi 6191 . . . . . . . . . . 11  |-  ( <. 2o ,  1o >.  e.  ( om  X.  N. )  ->  [ <. 2o ,  1o >. ] ~Q0  e.  ( ( om  X.  N. ) /. ~Q0  ) )
6361, 62ax-mp 7 . . . . . . . . . 10  |-  [ <. 2o ,  1o >. ] ~Q0  e.  ( ( om 
X.  N. ) /. ~Q0  )
6463, 14eleqtrri 2129 . . . . . . . . 9  |-  [ <. 2o ,  1o >. ] ~Q0  e. Q0
65 distnq0r 6619 . . . . . . . . 9  |-  ( ( Q  e. Q0  /\  [ <. M ,  1o >. ] ~Q0  e. Q0  /\  [ <. 2o ,  1o >. ] ~Q0  e. Q0 )  ->  ( ( [
<. M ,  1o >. ] ~Q0 +Q0  [ <. 2o ,  1o >. ] ~Q0  ) ·Q0  Q
)  =  ( ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q ) +Q0  ( [
<. 2o ,  1o >. ] ~Q0 ·Q0 
Q ) ) )
6664, 65mp3an3 1232 . . . . . . . 8  |-  ( ( Q  e. Q0  /\  [ <. M ,  1o >. ] ~Q0  e. Q0 )  ->  ( ( [
<. M ,  1o >. ] ~Q0 +Q0  [ <. 2o ,  1o >. ] ~Q0  ) ·Q0  Q
)  =  ( ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q ) +Q0  ( [
<. 2o ,  1o >. ] ~Q0 ·Q0 
Q ) ) )
6718, 16, 66syl2anc 397 . . . . . . 7  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  (
( [ <. M ,  1o >. ] ~Q0 +Q0  [ <. 2o ,  1o >. ] ~Q0  ) ·Q0  Q )  =  ( ( [
<. M ,  1o >. ] ~Q0 ·Q0 
Q ) +Q0  ( [ <. 2o ,  1o >. ] ~Q0 ·Q0  Q ) ) )
6859, 67eqtrd 2088 . . . . . 6  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  ( [ <. ( M  +o  2o ) ,  1o >. ] ~Q0 ·Q0 
Q )  =  ( ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q ) +Q0  ( [ <. 2o ,  1o >. ] ~Q0 ·Q0  Q )
) )
6968oveq2d 5556 . . . . 5  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  ( X +Q0  ( [ <. ( M  +o  2o ) ,  1o >. ] ~Q0 ·Q0 
Q ) )  =  ( X +Q0  ( ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q ) +Q0  ( [ <. 2o ,  1o >. ] ~Q0 ·Q0  Q )
) ) )
70 nq02m 6621 . . . . . . . . 9  |-  ( Q  e. Q0  ->  ( [ <. 2o ,  1o >. ] ~Q0 ·Q0  Q )  =  ( Q +Q0  Q ) )
7170oveq2d 5556 . . . . . . . 8  |-  ( Q  e. Q0  ->  ( ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q ) +Q0  ( [ <. 2o ,  1o >. ] ~Q0 ·Q0  Q )
)  =  ( ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q ) +Q0  ( Q +Q0  Q
) ) )
7271oveq2d 5556 . . . . . . 7  |-  ( Q  e. Q0  ->  ( X +Q0  ( ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q ) +Q0  ( [ <. 2o ,  1o >. ] ~Q0 ·Q0  Q )
) )  =  ( X +Q0  ( ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q ) +Q0  ( Q +Q0  Q ) ) ) )
7318, 72syl 14 . . . . . 6  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  ( X +Q0  ( ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q ) +Q0  ( [ <. 2o ,  1o >. ] ~Q0 ·Q0  Q )
) )  =  ( X +Q0  ( ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q ) +Q0  ( Q +Q0  Q ) ) ) )
7417, 6sseldi 2971 . . . . . . 7  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  X  e. Q0 )
75 addclnq0 6607 . . . . . . . 8  |-  ( ( Q  e. Q0  /\  Q  e. Q0 )  ->  ( Q +Q0  Q )  e. Q0 )
7618, 18, 75syl2anc 397 . . . . . . 7  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  ( Q +Q0  Q )  e. Q0 )
77 addassnq0 6618 . . . . . . 7  |-  ( ( X  e. Q0  /\  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )  e. Q0  /\  ( Q +Q0  Q )  e. Q0 )  ->  ( ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
) +Q0  ( Q +Q0  Q ) )  =  ( X +Q0  ( ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q ) +Q0  ( Q +Q0  Q ) ) ) )
7874, 20, 76, 77syl3anc 1146 . . . . . 6  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  (
( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q ) ) +Q0  ( Q +Q0  Q ) )  =  ( X +Q0  ( ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q ) +Q0  ( Q +Q0  Q ) ) ) )
7973, 78eqtr4d 2091 . . . . 5  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  ( X +Q0  ( ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q ) +Q0  ( [ <. 2o ,  1o >. ] ~Q0 ·Q0  Q )
) )  =  ( ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q ) ) +Q0  ( Q +Q0  Q ) ) )
8055, 69, 793eqtrd 2092 . . . 4  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  B  =  ( ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
) +Q0  ( Q +Q0  Q ) ) )
81 oveq1 5547 . . . . . 6  |-  ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q ) )  ->  ( A +Q0  ( Q +Q0  Q
) )  =  ( ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q ) ) +Q0  ( Q +Q0  Q ) ) )
8281eqeq2d 2067 . . . . 5  |-  ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q ) )  ->  ( B  =  ( A +Q0  ( Q +Q0  Q ) )  <->  B  =  ( ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q ) ) +Q0  ( Q +Q0  Q ) ) ) )
835, 82syl 14 . . . 4  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  ( B  =  ( A +Q0  ( Q +Q0  Q
) )  <->  B  =  ( ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q ) ) +Q0  ( Q +Q0  Q ) ) ) )
8480, 83mpbird 160 . . 3  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  B  =  ( A +Q0  ( Q +Q0  Q ) ) )
854, 27, 843eqtr4rd 2099 . 2  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  B  =  ( A  +Q  ( Q  +Q  Q
) ) )
86 simprlr 498 . . 3  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  ( Q  +Q  Q )  <Q  P )
87 ltrelnq 6521 . . . . . 6  |-  <Q  C_  ( Q.  X.  Q. )
8887brel 4420 . . . . 5  |-  ( ( Q  +Q  Q ) 
<Q  P  ->  ( ( Q  +Q  Q )  e.  Q.  /\  P  e.  Q. ) )
8986, 88syl 14 . . . 4  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  (
( Q  +Q  Q
)  e.  Q.  /\  P  e.  Q. )
)
90 ltanqg 6556 . . . . 5  |-  ( ( ( Q  +Q  Q
)  e.  Q.  /\  P  e.  Q.  /\  A  e.  Q. )  ->  (
( Q  +Q  Q
)  <Q  P  <->  ( A  +Q  ( Q  +Q  Q
) )  <Q  ( A  +Q  P ) ) )
91903expa 1115 . . . 4  |-  ( ( ( ( Q  +Q  Q )  e.  Q.  /\  P  e.  Q. )  /\  A  e.  Q. )  ->  ( ( Q  +Q  Q )  <Q  P 
<->  ( A  +Q  ( Q  +Q  Q ) ) 
<Q  ( A  +Q  P
) ) )
9289, 23, 91syl2anc 397 . . 3  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  (
( Q  +Q  Q
)  <Q  P  <->  ( A  +Q  ( Q  +Q  Q
) )  <Q  ( A  +Q  P ) ) )
9386, 92mpbid 139 . 2  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  ( A  +Q  ( Q  +Q  Q ) )  <Q 
( A  +Q  P
) )
9485, 93eqbrtrd 3812 1  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  B  <Q  ( A  +Q  P
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 101    <-> wb 102    = wceq 1259    e. wcel 1409    =/= wne 2220   (/)c0 3252   <.cop 3406   class class class wbr 3792   omcom 4341    X. cxp 4371  (class class class)co 5540   1oc1o 6025   2oc2o 6026    +o coa 6029   [cec 6135   /.cqs 6136   N.cnpi 6428    ~Q ceq 6435   Q.cnq 6436    +Q cplq 6438    .Q cmq 6439    <Q cltq 6441   ~Q0 ceq0 6442  Q0cnq0 6443   +Q0 cplq0 6445   ·Q0 cmq0 6446
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-coll 3900  ax-sep 3903  ax-nul 3911  ax-pow 3955  ax-pr 3972  ax-un 4198  ax-setind 4290  ax-iinf 4339
This theorem depends on definitions:  df-bi 114  df-dc 754  df-3or 897  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-ral 2328  df-rex 2329  df-reu 2330  df-rab 2332  df-v 2576  df-sbc 2788  df-csb 2881  df-dif 2948  df-un 2950  df-in 2952  df-ss 2959  df-nul 3253  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-int 3644  df-iun 3687  df-br 3793  df-opab 3847  df-mpt 3848  df-tr 3883  df-eprel 4054  df-id 4058  df-iord 4131  df-on 4133  df-suc 4136  df-iom 4342  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382  df-dm 4383  df-rn 4384  df-res 4385  df-ima 4386  df-iota 4895  df-fun 4932  df-fn 4933  df-f 4934  df-f1 4935  df-fo 4936  df-f1o 4937  df-fv 4938  df-ov 5543  df-oprab 5544  df-mpt2 5545  df-1st 5795  df-2nd 5796  df-recs 5951  df-irdg 5988  df-1o 6032  df-2o 6033  df-oadd 6036  df-omul 6037  df-er 6137  df-ec 6139  df-qs 6143  df-ni 6460  df-pli 6461  df-mi 6462  df-lti 6463  df-plpq 6500  df-mpq 6501  df-enq 6503  df-nqqs 6504  df-plqqs 6505  df-mqqs 6506  df-ltnqqs 6509  df-enq0 6580  df-nq0 6581  df-plq0 6583  df-mq0 6584
This theorem is referenced by:  prarloc  6659
  Copyright terms: Public domain W3C validator