ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prarloclemlt Unicode version

Theorem prarloclemlt 6649
Description: Two possible ways of contracting an interval which straddles a Dedekind cut. Lemma for prarloc 6659. (Contributed by Jim Kingdon, 10-Nov-2019.)
Assertion
Ref Expression
prarloclemlt  |-  ( ( ( X  e.  om  /\  ( <. L ,  U >.  e.  P.  /\  A  e.  L  /\  P  e. 
Q. ) )  /\  y  e.  om )  ->  ( A  +Q  ( [ <. ( y  +o  1o ) ,  1o >. ]  ~Q  .Q  P
) )  <Q  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  X ) ,  1o >. ]  ~Q  .Q  P ) ) )

Proof of Theorem prarloclemlt
StepHypRef Expression
1 2onn 6125 . . . . . . . . . . . 12  |-  2o  e.  om
2 nnacl 6090 . . . . . . . . . . . 12  |-  ( ( y  e.  om  /\  2o  e.  om )  -> 
( y  +o  2o )  e.  om )
31, 2mpan2 409 . . . . . . . . . . 11  |-  ( y  e.  om  ->  (
y  +o  2o )  e.  om )
4 nnaword1 6117 . . . . . . . . . . 11  |-  ( ( ( y  +o  2o )  e.  om  /\  X  e.  om )  ->  (
y  +o  2o ) 
C_  ( ( y  +o  2o )  +o  X ) )
53, 4sylan 271 . . . . . . . . . 10  |-  ( ( y  e.  om  /\  X  e.  om )  ->  ( y  +o  2o )  C_  ( ( y  +o  2o )  +o  X ) )
6 1onn 6124 . . . . . . . . . . . . . . 15  |-  1o  e.  om
76elexi 2584 . . . . . . . . . . . . . 14  |-  1o  e.  _V
87sucid 4182 . . . . . . . . . . . . 13  |-  1o  e.  suc  1o
9 df-2o 6033 . . . . . . . . . . . . 13  |-  2o  =  suc  1o
108, 9eleqtrri 2129 . . . . . . . . . . . 12  |-  1o  e.  2o
11 nnaordi 6112 . . . . . . . . . . . . 13  |-  ( ( 2o  e.  om  /\  y  e.  om )  ->  ( 1o  e.  2o  ->  ( y  +o  1o )  e.  ( y  +o  2o ) ) )
121, 11mpan 408 . . . . . . . . . . . 12  |-  ( y  e.  om  ->  ( 1o  e.  2o  ->  (
y  +o  1o )  e.  ( y  +o  2o ) ) )
1310, 12mpi 15 . . . . . . . . . . 11  |-  ( y  e.  om  ->  (
y  +o  1o )  e.  ( y  +o  2o ) )
1413adantr 265 . . . . . . . . . 10  |-  ( ( y  e.  om  /\  X  e.  om )  ->  ( y  +o  1o )  e.  ( y  +o  2o ) )
155, 14sseldd 2974 . . . . . . . . 9  |-  ( ( y  e.  om  /\  X  e.  om )  ->  ( y  +o  1o )  e.  ( (
y  +o  2o )  +o  X ) )
1615ancoms 259 . . . . . . . 8  |-  ( ( X  e.  om  /\  y  e.  om )  ->  ( y  +o  1o )  e.  ( (
y  +o  2o )  +o  X ) )
17 1pi 6471 . . . . . . . . . . 11  |-  1o  e.  N.
18 nnppipi 6499 . . . . . . . . . . 11  |-  ( ( y  e.  om  /\  1o  e.  N. )  -> 
( y  +o  1o )  e.  N. )
1917, 18mpan2 409 . . . . . . . . . 10  |-  ( y  e.  om  ->  (
y  +o  1o )  e.  N. )
2019adantl 266 . . . . . . . . 9  |-  ( ( X  e.  om  /\  y  e.  om )  ->  ( y  +o  1o )  e.  N. )
21 o1p1e2 6079 . . . . . . . . . . . . . 14  |-  ( 1o 
+o  1o )  =  2o
22 nnppipi 6499 . . . . . . . . . . . . . . 15  |-  ( ( 1o  e.  om  /\  1o  e.  N. )  -> 
( 1o  +o  1o )  e.  N. )
236, 17, 22mp2an 410 . . . . . . . . . . . . . 14  |-  ( 1o 
+o  1o )  e. 
N.
2421, 23eqeltrri 2127 . . . . . . . . . . . . 13  |-  2o  e.  N.
25 nnppipi 6499 . . . . . . . . . . . . 13  |-  ( ( y  e.  om  /\  2o  e.  N. )  -> 
( y  +o  2o )  e.  N. )
2624, 25mpan2 409 . . . . . . . . . . . 12  |-  ( y  e.  om  ->  (
y  +o  2o )  e.  N. )
27 pinn 6465 . . . . . . . . . . . 12  |-  ( ( y  +o  2o )  e.  N.  ->  (
y  +o  2o )  e.  om )
2826, 27syl 14 . . . . . . . . . . 11  |-  ( y  e.  om  ->  (
y  +o  2o )  e.  om )
29 nnacom 6094 . . . . . . . . . . 11  |-  ( ( X  e.  om  /\  ( y  +o  2o )  e.  om )  ->  ( X  +o  (
y  +o  2o ) )  =  ( ( y  +o  2o )  +o  X ) )
3028, 29sylan2 274 . . . . . . . . . 10  |-  ( ( X  e.  om  /\  y  e.  om )  ->  ( X  +o  (
y  +o  2o ) )  =  ( ( y  +o  2o )  +o  X ) )
31 nnppipi 6499 . . . . . . . . . . 11  |-  ( ( X  e.  om  /\  ( y  +o  2o )  e.  N. )  ->  ( X  +o  (
y  +o  2o ) )  e.  N. )
3226, 31sylan2 274 . . . . . . . . . 10  |-  ( ( X  e.  om  /\  y  e.  om )  ->  ( X  +o  (
y  +o  2o ) )  e.  N. )
3330, 32eqeltrrd 2131 . . . . . . . . 9  |-  ( ( X  e.  om  /\  y  e.  om )  ->  ( ( y  +o  2o )  +o  X
)  e.  N. )
34 ltpiord 6475 . . . . . . . . 9  |-  ( ( ( y  +o  1o )  e.  N.  /\  (
( y  +o  2o )  +o  X )  e. 
N. )  ->  (
( y  +o  1o )  <N  ( ( y  +o  2o )  +o  X )  <->  ( y  +o  1o )  e.  ( ( y  +o  2o )  +o  X ) ) )
3520, 33, 34syl2anc 397 . . . . . . . 8  |-  ( ( X  e.  om  /\  y  e.  om )  ->  ( ( y  +o  1o )  <N  (
( y  +o  2o )  +o  X )  <->  ( y  +o  1o )  e.  ( ( y  +o  2o )  +o  X ) ) )
3616, 35mpbird 160 . . . . . . 7  |-  ( ( X  e.  om  /\  y  e.  om )  ->  ( y  +o  1o )  <N  ( ( y  +o  2o )  +o  X ) )
37 mulidpi 6474 . . . . . . . . 9  |-  ( ( y  +o  1o )  e.  N.  ->  (
( y  +o  1o )  .N  1o )  =  ( y  +o  1o ) )
3820, 37syl 14 . . . . . . . 8  |-  ( ( X  e.  om  /\  y  e.  om )  ->  ( ( y  +o  1o )  .N  1o )  =  ( y  +o  1o ) )
39 mulcompig 6487 . . . . . . . . . 10  |-  ( ( ( ( y  +o  2o )  +o  X
)  e.  N.  /\  1o  e.  N. )  -> 
( ( ( y  +o  2o )  +o  X )  .N  1o )  =  ( 1o  .N  ( ( y  +o  2o )  +o  X
) ) )
4033, 17, 39sylancl 398 . . . . . . . . 9  |-  ( ( X  e.  om  /\  y  e.  om )  ->  ( ( ( y  +o  2o )  +o  X )  .N  1o )  =  ( 1o  .N  ( ( y  +o  2o )  +o  X
) ) )
41 mulidpi 6474 . . . . . . . . . 10  |-  ( ( ( y  +o  2o )  +o  X )  e. 
N.  ->  ( ( ( y  +o  2o )  +o  X )  .N  1o )  =  ( ( y  +o  2o )  +o  X ) )
4233, 41syl 14 . . . . . . . . 9  |-  ( ( X  e.  om  /\  y  e.  om )  ->  ( ( ( y  +o  2o )  +o  X )  .N  1o )  =  ( (
y  +o  2o )  +o  X ) )
4340, 42eqtr3d 2090 . . . . . . . 8  |-  ( ( X  e.  om  /\  y  e.  om )  ->  ( 1o  .N  (
( y  +o  2o )  +o  X ) )  =  ( ( y  +o  2o )  +o  X ) )
4438, 43breq12d 3805 . . . . . . 7  |-  ( ( X  e.  om  /\  y  e.  om )  ->  ( ( ( y  +o  1o )  .N  1o )  <N  ( 1o  .N  ( ( y  +o  2o )  +o  X ) )  <->  ( y  +o  1o )  <N  (
( y  +o  2o )  +o  X ) ) )
4536, 44mpbird 160 . . . . . 6  |-  ( ( X  e.  om  /\  y  e.  om )  ->  ( ( y  +o  1o )  .N  1o )  <N  ( 1o  .N  ( ( y  +o  2o )  +o  X
) ) )
46 simpr 107 . . . . . . 7  |-  ( ( X  e.  om  /\  y  e.  om )  ->  y  e.  om )
47 ordpipqqs 6530 . . . . . . . . . 10  |-  ( ( ( ( y  +o  1o )  e.  N.  /\  1o  e.  N. )  /\  ( ( ( y  +o  2o )  +o  X )  e.  N.  /\  1o  e.  N. )
)  ->  ( [ <. ( y  +o  1o ) ,  1o >. ]  ~Q  <Q  [ <. ( ( y  +o  2o )  +o  X ) ,  1o >. ]  ~Q  <->  ( (
y  +o  1o )  .N  1o )  <N 
( 1o  .N  (
( y  +o  2o )  +o  X ) ) ) )
4817, 47mpanl2 419 . . . . . . . . 9  |-  ( ( ( y  +o  1o )  e.  N.  /\  (
( ( y  +o  2o )  +o  X
)  e.  N.  /\  1o  e.  N. ) )  ->  ( [ <. ( y  +o  1o ) ,  1o >. ]  ~Q  <Q  [ <. ( ( y  +o  2o )  +o  X ) ,  1o >. ]  ~Q  <->  ( (
y  +o  1o )  .N  1o )  <N 
( 1o  .N  (
( y  +o  2o )  +o  X ) ) ) )
4917, 48mpanr2 422 . . . . . . . 8  |-  ( ( ( y  +o  1o )  e.  N.  /\  (
( y  +o  2o )  +o  X )  e. 
N. )  ->  ( [ <. ( y  +o  1o ) ,  1o >. ]  ~Q  <Q  [ <. ( ( y  +o  2o )  +o  X ) ,  1o >. ]  ~Q  <->  ( (
y  +o  1o )  .N  1o )  <N 
( 1o  .N  (
( y  +o  2o )  +o  X ) ) ) )
5019, 49sylan 271 . . . . . . 7  |-  ( ( y  e.  om  /\  ( ( y  +o  2o )  +o  X
)  e.  N. )  ->  ( [ <. (
y  +o  1o ) ,  1o >. ]  ~Q  <Q  [ <. ( ( y  +o  2o )  +o  X ) ,  1o >. ]  ~Q  <->  ( (
y  +o  1o )  .N  1o )  <N 
( 1o  .N  (
( y  +o  2o )  +o  X ) ) ) )
5146, 33, 50syl2anc 397 . . . . . 6  |-  ( ( X  e.  om  /\  y  e.  om )  ->  ( [ <. (
y  +o  1o ) ,  1o >. ]  ~Q  <Q  [ <. ( ( y  +o  2o )  +o  X ) ,  1o >. ]  ~Q  <->  ( (
y  +o  1o )  .N  1o )  <N 
( 1o  .N  (
( y  +o  2o )  +o  X ) ) ) )
5245, 51mpbird 160 . . . . 5  |-  ( ( X  e.  om  /\  y  e.  om )  ->  [ <. ( y  +o  1o ) ,  1o >. ]  ~Q  <Q  [ <. ( ( y  +o  2o )  +o  X ) ,  1o >. ]  ~Q  )
5352adantlr 454 . . . 4  |-  ( ( ( X  e.  om  /\  ( <. L ,  U >.  e.  P.  /\  A  e.  L  /\  P  e. 
Q. ) )  /\  y  e.  om )  ->  [ <. ( y  +o  1o ) ,  1o >. ]  ~Q  <Q  [ <. ( ( y  +o  2o )  +o  X ) ,  1o >. ]  ~Q  )
54 opelxpi 4404 . . . . . . . . 9  |-  ( ( ( y  +o  1o )  e.  N.  /\  1o  e.  N. )  ->  <. (
y  +o  1o ) ,  1o >.  e.  ( N.  X.  N. )
)
5520, 17, 54sylancl 398 . . . . . . . 8  |-  ( ( X  e.  om  /\  y  e.  om )  -> 
<. ( y  +o  1o ) ,  1o >.  e.  ( N.  X.  N. )
)
56 enqex 6516 . . . . . . . . 9  |-  ~Q  e.  _V
5756ecelqsi 6191 . . . . . . . 8  |-  ( <.
( y  +o  1o ) ,  1o >.  e.  ( N.  X.  N. )  ->  [ <. ( y  +o  1o ) ,  1o >. ]  ~Q  e.  ( ( N.  X.  N. ) /.  ~Q  ) )
5855, 57syl 14 . . . . . . 7  |-  ( ( X  e.  om  /\  y  e.  om )  ->  [ <. ( y  +o  1o ) ,  1o >. ]  ~Q  e.  ( ( N.  X.  N. ) /.  ~Q  ) )
59 df-nqqs 6504 . . . . . . 7  |-  Q.  =  ( ( N.  X.  N. ) /.  ~Q  )
6058, 59syl6eleqr 2147 . . . . . 6  |-  ( ( X  e.  om  /\  y  e.  om )  ->  [ <. ( y  +o  1o ) ,  1o >. ]  ~Q  e.  Q. )
6160adantlr 454 . . . . 5  |-  ( ( ( X  e.  om  /\  ( <. L ,  U >.  e.  P.  /\  A  e.  L  /\  P  e. 
Q. ) )  /\  y  e.  om )  ->  [ <. ( y  +o  1o ) ,  1o >. ]  ~Q  e.  Q. )
62 opelxpi 4404 . . . . . . . . 9  |-  ( ( ( ( y  +o  2o )  +o  X
)  e.  N.  /\  1o  e.  N. )  ->  <. ( ( y  +o  2o )  +o  X
) ,  1o >.  e.  ( N.  X.  N. ) )
6333, 17, 62sylancl 398 . . . . . . . 8  |-  ( ( X  e.  om  /\  y  e.  om )  -> 
<. ( ( y  +o  2o )  +o  X
) ,  1o >.  e.  ( N.  X.  N. ) )
6456ecelqsi 6191 . . . . . . . 8  |-  ( <.
( ( y  +o  2o )  +o  X
) ,  1o >.  e.  ( N.  X.  N. )  ->  [ <. (
( y  +o  2o )  +o  X ) ,  1o >. ]  ~Q  e.  ( ( N.  X.  N. ) /.  ~Q  )
)
6563, 64syl 14 . . . . . . 7  |-  ( ( X  e.  om  /\  y  e.  om )  ->  [ <. ( ( y  +o  2o )  +o  X ) ,  1o >. ]  ~Q  e.  ( ( N.  X.  N. ) /.  ~Q  ) )
6665, 59syl6eleqr 2147 . . . . . 6  |-  ( ( X  e.  om  /\  y  e.  om )  ->  [ <. ( ( y  +o  2o )  +o  X ) ,  1o >. ]  ~Q  e.  Q. )
6766adantlr 454 . . . . 5  |-  ( ( ( X  e.  om  /\  ( <. L ,  U >.  e.  P.  /\  A  e.  L  /\  P  e. 
Q. ) )  /\  y  e.  om )  ->  [ <. ( ( y  +o  2o )  +o  X ) ,  1o >. ]  ~Q  e.  Q. )
68 simplr3 959 . . . . 5  |-  ( ( ( X  e.  om  /\  ( <. L ,  U >.  e.  P.  /\  A  e.  L  /\  P  e. 
Q. ) )  /\  y  e.  om )  ->  P  e.  Q. )
69 ltmnqg 6557 . . . . 5  |-  ( ( [ <. ( y  +o  1o ) ,  1o >. ]  ~Q  e.  Q.  /\ 
[ <. ( ( y  +o  2o )  +o  X ) ,  1o >. ]  ~Q  e.  Q.  /\  P  e.  Q. )  ->  ( [ <. (
y  +o  1o ) ,  1o >. ]  ~Q  <Q  [ <. ( ( y  +o  2o )  +o  X ) ,  1o >. ]  ~Q  <->  ( P  .Q  [ <. ( y  +o  1o ) ,  1o >. ]  ~Q  )  <Q 
( P  .Q  [ <. ( ( y  +o  2o )  +o  X
) ,  1o >. ]  ~Q  ) ) )
7061, 67, 68, 69syl3anc 1146 . . . 4  |-  ( ( ( X  e.  om  /\  ( <. L ,  U >.  e.  P.  /\  A  e.  L  /\  P  e. 
Q. ) )  /\  y  e.  om )  ->  ( [ <. (
y  +o  1o ) ,  1o >. ]  ~Q  <Q  [ <. ( ( y  +o  2o )  +o  X ) ,  1o >. ]  ~Q  <->  ( P  .Q  [ <. ( y  +o  1o ) ,  1o >. ]  ~Q  )  <Q 
( P  .Q  [ <. ( ( y  +o  2o )  +o  X
) ,  1o >. ]  ~Q  ) ) )
7153, 70mpbid 139 . . 3  |-  ( ( ( X  e.  om  /\  ( <. L ,  U >.  e.  P.  /\  A  e.  L  /\  P  e. 
Q. ) )  /\  y  e.  om )  ->  ( P  .Q  [ <. ( y  +o  1o ) ,  1o >. ]  ~Q  )  <Q  ( P  .Q  [
<. ( ( y  +o  2o )  +o  X
) ,  1o >. ]  ~Q  ) )
72 mulcomnqg 6539 . . . . 5  |-  ( ( P  e.  Q.  /\  [
<. ( y  +o  1o ) ,  1o >. ]  ~Q  e.  Q. )  ->  ( P  .Q  [ <. (
y  +o  1o ) ,  1o >. ]  ~Q  )  =  ( [ <. ( y  +o  1o ) ,  1o >. ]  ~Q  .Q  P ) )
7368, 61, 72syl2anc 397 . . . 4  |-  ( ( ( X  e.  om  /\  ( <. L ,  U >.  e.  P.  /\  A  e.  L  /\  P  e. 
Q. ) )  /\  y  e.  om )  ->  ( P  .Q  [ <. ( y  +o  1o ) ,  1o >. ]  ~Q  )  =  ( [ <. ( y  +o  1o ) ,  1o >. ]  ~Q  .Q  P ) )
74 mulcomnqg 6539 . . . . 5  |-  ( ( P  e.  Q.  /\  [
<. ( ( y  +o  2o )  +o  X
) ,  1o >. ]  ~Q  e.  Q. )  ->  ( P  .Q  [ <. ( ( y  +o  2o )  +o  X
) ,  1o >. ]  ~Q  )  =  ( [ <. ( ( y  +o  2o )  +o  X ) ,  1o >. ]  ~Q  .Q  P
) )
7568, 67, 74syl2anc 397 . . . 4  |-  ( ( ( X  e.  om  /\  ( <. L ,  U >.  e.  P.  /\  A  e.  L  /\  P  e. 
Q. ) )  /\  y  e.  om )  ->  ( P  .Q  [ <. ( ( y  +o  2o )  +o  X
) ,  1o >. ]  ~Q  )  =  ( [ <. ( ( y  +o  2o )  +o  X ) ,  1o >. ]  ~Q  .Q  P
) )
7673, 75breq12d 3805 . . 3  |-  ( ( ( X  e.  om  /\  ( <. L ,  U >.  e.  P.  /\  A  e.  L  /\  P  e. 
Q. ) )  /\  y  e.  om )  ->  ( ( P  .Q  [
<. ( y  +o  1o ) ,  1o >. ]  ~Q  )  <Q  ( P  .Q  [
<. ( ( y  +o  2o )  +o  X
) ,  1o >. ]  ~Q  )  <->  ( [ <. ( y  +o  1o ) ,  1o >. ]  ~Q  .Q  P )  <Q  ( [ <. ( ( y  +o  2o )  +o  X ) ,  1o >. ]  ~Q  .Q  P
) ) )
7771, 76mpbid 139 . 2  |-  ( ( ( X  e.  om  /\  ( <. L ,  U >.  e.  P.  /\  A  e.  L  /\  P  e. 
Q. ) )  /\  y  e.  om )  ->  ( [ <. (
y  +o  1o ) ,  1o >. ]  ~Q  .Q  P )  <Q  ( [ <. ( ( y  +o  2o )  +o  X ) ,  1o >. ]  ~Q  .Q  P
) )
78 mulclnq 6532 . . . 4  |-  ( ( [ <. ( y  +o  1o ) ,  1o >. ]  ~Q  e.  Q.  /\  P  e.  Q. )  ->  ( [ <. (
y  +o  1o ) ,  1o >. ]  ~Q  .Q  P )  e.  Q. )
7961, 68, 78syl2anc 397 . . 3  |-  ( ( ( X  e.  om  /\  ( <. L ,  U >.  e.  P.  /\  A  e.  L  /\  P  e. 
Q. ) )  /\  y  e.  om )  ->  ( [ <. (
y  +o  1o ) ,  1o >. ]  ~Q  .Q  P )  e.  Q. )
80 mulclnq 6532 . . . 4  |-  ( ( [ <. ( ( y  +o  2o )  +o  X ) ,  1o >. ]  ~Q  e.  Q.  /\  P  e.  Q. )  ->  ( [ <. (
( y  +o  2o )  +o  X ) ,  1o >. ]  ~Q  .Q  P )  e.  Q. )
8167, 68, 80syl2anc 397 . . 3  |-  ( ( ( X  e.  om  /\  ( <. L ,  U >.  e.  P.  /\  A  e.  L  /\  P  e. 
Q. ) )  /\  y  e.  om )  ->  ( [ <. (
( y  +o  2o )  +o  X ) ,  1o >. ]  ~Q  .Q  P )  e.  Q. )
82 simplr1 957 . . . 4  |-  ( ( ( X  e.  om  /\  ( <. L ,  U >.  e.  P.  /\  A  e.  L  /\  P  e. 
Q. ) )  /\  y  e.  om )  -> 
<. L ,  U >.  e. 
P. )
83 simplr2 958 . . . 4  |-  ( ( ( X  e.  om  /\  ( <. L ,  U >.  e.  P.  /\  A  e.  L  /\  P  e. 
Q. ) )  /\  y  e.  om )  ->  A  e.  L )
84 elprnql 6637 . . . 4  |-  ( (
<. L ,  U >.  e. 
P.  /\  A  e.  L )  ->  A  e.  Q. )
8582, 83, 84syl2anc 397 . . 3  |-  ( ( ( X  e.  om  /\  ( <. L ,  U >.  e.  P.  /\  A  e.  L  /\  P  e. 
Q. ) )  /\  y  e.  om )  ->  A  e.  Q. )
86 ltanqg 6556 . . 3  |-  ( ( ( [ <. (
y  +o  1o ) ,  1o >. ]  ~Q  .Q  P )  e.  Q.  /\  ( [ <. (
( y  +o  2o )  +o  X ) ,  1o >. ]  ~Q  .Q  P )  e.  Q.  /\  A  e.  Q. )  ->  ( ( [ <. ( y  +o  1o ) ,  1o >. ]  ~Q  .Q  P )  <Q  ( [ <. ( ( y  +o  2o )  +o  X ) ,  1o >. ]  ~Q  .Q  P
)  <->  ( A  +Q  ( [ <. ( y  +o  1o ) ,  1o >. ]  ~Q  .Q  P
) )  <Q  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  X ) ,  1o >. ]  ~Q  .Q  P ) ) ) )
8779, 81, 85, 86syl3anc 1146 . 2  |-  ( ( ( X  e.  om  /\  ( <. L ,  U >.  e.  P.  /\  A  e.  L  /\  P  e. 
Q. ) )  /\  y  e.  om )  ->  ( ( [ <. ( y  +o  1o ) ,  1o >. ]  ~Q  .Q  P )  <Q  ( [ <. ( ( y  +o  2o )  +o  X ) ,  1o >. ]  ~Q  .Q  P
)  <->  ( A  +Q  ( [ <. ( y  +o  1o ) ,  1o >. ]  ~Q  .Q  P
) )  <Q  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  X ) ,  1o >. ]  ~Q  .Q  P ) ) ) )
8877, 87mpbid 139 1  |-  ( ( ( X  e.  om  /\  ( <. L ,  U >.  e.  P.  /\  A  e.  L  /\  P  e. 
Q. ) )  /\  y  e.  om )  ->  ( A  +Q  ( [ <. ( y  +o  1o ) ,  1o >. ]  ~Q  .Q  P
) )  <Q  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  X ) ,  1o >. ]  ~Q  .Q  P ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 101    <-> wb 102    /\ w3a 896    = wceq 1259    e. wcel 1409    C_ wss 2945   <.cop 3406   class class class wbr 3792   suc csuc 4130   omcom 4341    X. cxp 4371  (class class class)co 5540   1oc1o 6025   2oc2o 6026    +o coa 6029   [cec 6135   /.cqs 6136   N.cnpi 6428    .N cmi 6430    <N clti 6431    ~Q ceq 6435   Q.cnq 6436    +Q cplq 6438    .Q cmq 6439    <Q cltq 6441   P.cnp 6447
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-coll 3900  ax-sep 3903  ax-nul 3911  ax-pow 3955  ax-pr 3972  ax-un 4198  ax-setind 4290  ax-iinf 4339
This theorem depends on definitions:  df-bi 114  df-dc 754  df-3or 897  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-ral 2328  df-rex 2329  df-reu 2330  df-rab 2332  df-v 2576  df-sbc 2788  df-csb 2881  df-dif 2948  df-un 2950  df-in 2952  df-ss 2959  df-nul 3253  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-int 3644  df-iun 3687  df-br 3793  df-opab 3847  df-mpt 3848  df-tr 3883  df-eprel 4054  df-id 4058  df-iord 4131  df-on 4133  df-suc 4136  df-iom 4342  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382  df-dm 4383  df-rn 4384  df-res 4385  df-ima 4386  df-iota 4895  df-fun 4932  df-fn 4933  df-f 4934  df-f1 4935  df-fo 4936  df-f1o 4937  df-fv 4938  df-ov 5543  df-oprab 5544  df-mpt2 5545  df-1st 5795  df-2nd 5796  df-recs 5951  df-irdg 5988  df-1o 6032  df-2o 6033  df-oadd 6036  df-omul 6037  df-er 6137  df-ec 6139  df-qs 6143  df-ni 6460  df-pli 6461  df-mi 6462  df-lti 6463  df-plpq 6500  df-mpq 6501  df-enq 6503  df-nqqs 6504  df-plqqs 6505  df-mqqs 6506  df-ltnqqs 6509  df-inp 6622
This theorem is referenced by:  prarloclem3step  6652
  Copyright terms: Public domain W3C validator