ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prdisj Unicode version

Theorem prdisj 6648
Description: A Dedekind cut is disjoint. (Contributed by Jim Kingdon, 15-Dec-2019.)
Assertion
Ref Expression
prdisj  |-  ( (
<. L ,  U >.  e. 
P.  /\  A  e.  Q. )  ->  -.  ( A  e.  L  /\  A  e.  U )
)

Proof of Theorem prdisj
Dummy variables  q  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2116 . . . . 5  |-  ( q  =  A  ->  (
q  e.  Q.  <->  A  e.  Q. ) )
21anbi2d 445 . . . 4  |-  ( q  =  A  ->  (
( <. L ,  U >.  e.  P.  /\  q  e.  Q. )  <->  ( <. L ,  U >.  e.  P.  /\  A  e.  Q. )
) )
3 eleq1 2116 . . . . . 6  |-  ( q  =  A  ->  (
q  e.  L  <->  A  e.  L ) )
4 eleq1 2116 . . . . . 6  |-  ( q  =  A  ->  (
q  e.  U  <->  A  e.  U ) )
53, 4anbi12d 450 . . . . 5  |-  ( q  =  A  ->  (
( q  e.  L  /\  q  e.  U
)  <->  ( A  e.  L  /\  A  e.  U ) ) )
65notbid 602 . . . 4  |-  ( q  =  A  ->  ( -.  ( q  e.  L  /\  q  e.  U
)  <->  -.  ( A  e.  L  /\  A  e.  U ) ) )
72, 6imbi12d 227 . . 3  |-  ( q  =  A  ->  (
( ( <. L ,  U >.  e.  P.  /\  q  e.  Q. )  ->  -.  ( q  e.  L  /\  q  e.  U ) )  <->  ( ( <. L ,  U >.  e. 
P.  /\  A  e.  Q. )  ->  -.  ( A  e.  L  /\  A  e.  U )
) ) )
8 elinp 6630 . . . . 5  |-  ( <. L ,  U >.  e. 
P. 
<->  ( ( ( L 
C_  Q.  /\  U  C_  Q. )  /\  ( E. q  e.  Q.  q  e.  L  /\  E. r  e.  Q.  r  e.  U ) )  /\  ( ( A. q  e.  Q.  ( q  e.  L  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  L
) )  /\  A. r  e.  Q.  (
r  e.  U  <->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  U ) ) )  /\  A. q  e. 
Q.  -.  ( q  e.  L  /\  q  e.  U )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  L  \/  r  e.  U ) ) ) ) )
9 simpr2 922 . . . . 5  |-  ( ( ( ( L  C_  Q.  /\  U  C_  Q. )  /\  ( E. q  e.  Q.  q  e.  L  /\  E. r  e.  Q.  r  e.  U )
)  /\  ( ( A. q  e.  Q.  ( q  e.  L  <->  E. r  e.  Q.  (
q  <Q  r  /\  r  e.  L ) )  /\  A. r  e.  Q.  (
r  e.  U  <->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  U ) ) )  /\  A. q  e. 
Q.  -.  ( q  e.  L  /\  q  e.  U )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  L  \/  r  e.  U ) ) ) )  ->  A. q  e.  Q.  -.  ( q  e.  L  /\  q  e.  U ) )
108, 9sylbi 118 . . . 4  |-  ( <. L ,  U >.  e. 
P.  ->  A. q  e.  Q.  -.  ( q  e.  L  /\  q  e.  U
) )
1110r19.21bi 2424 . . 3  |-  ( (
<. L ,  U >.  e. 
P.  /\  q  e.  Q. )  ->  -.  (
q  e.  L  /\  q  e.  U )
)
127, 11vtoclg 2630 . 2  |-  ( A  e.  Q.  ->  (
( <. L ,  U >.  e.  P.  /\  A  e.  Q. )  ->  -.  ( A  e.  L  /\  A  e.  U
) ) )
1312anabsi7 523 1  |-  ( (
<. L ,  U >.  e. 
P.  /\  A  e.  Q. )  ->  -.  ( A  e.  L  /\  A  e.  U )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 101    <-> wb 102    \/ wo 639    /\ w3a 896    = wceq 1259    e. wcel 1409   A.wral 2323   E.wrex 2324    C_ wss 2945   <.cop 3406   class class class wbr 3792   Q.cnq 6436    <Q cltq 6441   P.cnp 6447
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-coll 3900  ax-sep 3903  ax-pow 3955  ax-pr 3972  ax-un 4198  ax-iinf 4339
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-reu 2330  df-rab 2332  df-v 2576  df-sbc 2788  df-csb 2881  df-dif 2948  df-un 2950  df-in 2952  df-ss 2959  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-int 3644  df-iun 3687  df-br 3793  df-opab 3847  df-mpt 3848  df-id 4058  df-iom 4342  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382  df-dm 4383  df-rn 4384  df-res 4385  df-ima 4386  df-iota 4895  df-fun 4932  df-fn 4933  df-f 4934  df-f1 4935  df-fo 4936  df-f1o 4937  df-fv 4938  df-qs 6143  df-ni 6460  df-nqqs 6504  df-inp 6622
This theorem is referenced by:  ltpopr  6751  addcanprleml  6770  addcanprlemu  6771
  Copyright terms: Public domain W3C validator