Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  prid1 Unicode version

Theorem prid1 3516
 Description: An unordered pair contains its first member. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
prid1.1
Assertion
Ref Expression
prid1

Proof of Theorem prid1
StepHypRef Expression
1 prid1.1 . 2
2 prid1g 3514 . 2
31, 2ax-mp 7 1
 Colors of variables: wff set class Syntax hints:   wcel 1434  cvv 2610  cpr 3417 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065 This theorem depends on definitions:  df-bi 115  df-tru 1288  df-nf 1391  df-sb 1688  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-v 2612  df-un 2986  df-sn 3422  df-pr 3423 This theorem is referenced by:  prid2  3517  prnz  3530  preqr1  3580  preq12b  3582  prel12  3583  opi1  4015  opeluu  4228  onsucelsucexmidlem1  4299  regexmidlem1  4304  reg2exmidlema  4305  opthreg  4327  ordtri2or2exmid  4342  dmrnssfld  4643  funopg  4984  acexmidlemb  5556  2dom  6374  unfiexmid  6463  djuss  6564  reelprrecn  7240  pnfxr  7303  bdop  10951
 Copyright terms: Public domain W3C validator