ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prmuloclemcalc Unicode version

Theorem prmuloclemcalc 7373
Description: Calculations for prmuloc 7374. (Contributed by Jim Kingdon, 9-Dec-2019.)
Hypotheses
Ref Expression
prmuloclemcalc.ru  |-  ( ph  ->  R  <Q  U )
prmuloclemcalc.udp  |-  ( ph  ->  U  <Q  ( D  +Q  P ) )
prmuloclemcalc.axb  |-  ( ph  ->  ( A  +Q  X
)  =  B )
prmuloclemcalc.pbrx  |-  ( ph  ->  ( P  .Q  B
)  <Q  ( R  .Q  X ) )
prmuloclemcalc.a  |-  ( ph  ->  A  e.  Q. )
prmuloclemcalc.b  |-  ( ph  ->  B  e.  Q. )
prmuloclemcalc.d  |-  ( ph  ->  D  e.  Q. )
prmuloclemcalc.p  |-  ( ph  ->  P  e.  Q. )
prmuloclemcalc.x  |-  ( ph  ->  X  e.  Q. )
Assertion
Ref Expression
prmuloclemcalc  |-  ( ph  ->  ( U  .Q  A
)  <Q  ( D  .Q  B ) )

Proof of Theorem prmuloclemcalc
StepHypRef Expression
1 prmuloclemcalc.axb . . . . . . 7  |-  ( ph  ->  ( A  +Q  X
)  =  B )
21oveq2d 5790 . . . . . 6  |-  ( ph  ->  ( U  .Q  ( A  +Q  X ) )  =  ( U  .Q  B ) )
3 prmuloclemcalc.ru . . . . . . . . 9  |-  ( ph  ->  R  <Q  U )
4 ltrelnq 7173 . . . . . . . . . 10  |-  <Q  C_  ( Q.  X.  Q. )
54brel 4591 . . . . . . . . 9  |-  ( R 
<Q  U  ->  ( R  e.  Q.  /\  U  e.  Q. ) )
63, 5syl 14 . . . . . . . 8  |-  ( ph  ->  ( R  e.  Q.  /\  U  e.  Q. )
)
76simprd 113 . . . . . . 7  |-  ( ph  ->  U  e.  Q. )
8 prmuloclemcalc.a . . . . . . 7  |-  ( ph  ->  A  e.  Q. )
9 prmuloclemcalc.x . . . . . . 7  |-  ( ph  ->  X  e.  Q. )
10 distrnqg 7195 . . . . . . 7  |-  ( ( U  e.  Q.  /\  A  e.  Q.  /\  X  e.  Q. )  ->  ( U  .Q  ( A  +Q  X ) )  =  ( ( U  .Q  A )  +Q  ( U  .Q  X ) ) )
117, 8, 9, 10syl3anc 1216 . . . . . 6  |-  ( ph  ->  ( U  .Q  ( A  +Q  X ) )  =  ( ( U  .Q  A )  +Q  ( U  .Q  X
) ) )
122, 11eqtr3d 2174 . . . . 5  |-  ( ph  ->  ( U  .Q  B
)  =  ( ( U  .Q  A )  +Q  ( U  .Q  X ) ) )
13 prmuloclemcalc.b . . . . . . 7  |-  ( ph  ->  B  e.  Q. )
14 mulcomnqg 7191 . . . . . . 7  |-  ( ( B  e.  Q.  /\  U  e.  Q. )  ->  ( B  .Q  U
)  =  ( U  .Q  B ) )
1513, 7, 14syl2anc 408 . . . . . 6  |-  ( ph  ->  ( B  .Q  U
)  =  ( U  .Q  B ) )
16 prmuloclemcalc.udp . . . . . . . . . 10  |-  ( ph  ->  U  <Q  ( D  +Q  P ) )
17 ltmnqi 7211 . . . . . . . . . 10  |-  ( ( U  <Q  ( D  +Q  P )  /\  B  e.  Q. )  ->  ( B  .Q  U )  <Q 
( B  .Q  ( D  +Q  P ) ) )
1816, 13, 17syl2anc 408 . . . . . . . . 9  |-  ( ph  ->  ( B  .Q  U
)  <Q  ( B  .Q  ( D  +Q  P
) ) )
19 prmuloclemcalc.d . . . . . . . . . 10  |-  ( ph  ->  D  e.  Q. )
20 prmuloclemcalc.p . . . . . . . . . 10  |-  ( ph  ->  P  e.  Q. )
21 distrnqg 7195 . . . . . . . . . 10  |-  ( ( B  e.  Q.  /\  D  e.  Q.  /\  P  e.  Q. )  ->  ( B  .Q  ( D  +Q  P ) )  =  ( ( B  .Q  D )  +Q  ( B  .Q  P ) ) )
2213, 19, 20, 21syl3anc 1216 . . . . . . . . 9  |-  ( ph  ->  ( B  .Q  ( D  +Q  P ) )  =  ( ( B  .Q  D )  +Q  ( B  .Q  P
) ) )
2318, 22breqtrd 3954 . . . . . . . 8  |-  ( ph  ->  ( B  .Q  U
)  <Q  ( ( B  .Q  D )  +Q  ( B  .Q  P
) ) )
24 mulcomnqg 7191 . . . . . . . . . . 11  |-  ( ( P  e.  Q.  /\  B  e.  Q. )  ->  ( P  .Q  B
)  =  ( B  .Q  P ) )
2520, 13, 24syl2anc 408 . . . . . . . . . 10  |-  ( ph  ->  ( P  .Q  B
)  =  ( B  .Q  P ) )
26 prmuloclemcalc.pbrx . . . . . . . . . 10  |-  ( ph  ->  ( P  .Q  B
)  <Q  ( R  .Q  X ) )
2725, 26eqbrtrrd 3952 . . . . . . . . 9  |-  ( ph  ->  ( B  .Q  P
)  <Q  ( R  .Q  X ) )
28 mulclnq 7184 . . . . . . . . . 10  |-  ( ( B  e.  Q.  /\  D  e.  Q. )  ->  ( B  .Q  D
)  e.  Q. )
2913, 19, 28syl2anc 408 . . . . . . . . 9  |-  ( ph  ->  ( B  .Q  D
)  e.  Q. )
30 ltanqi 7210 . . . . . . . . 9  |-  ( ( ( B  .Q  P
)  <Q  ( R  .Q  X )  /\  ( B  .Q  D )  e. 
Q. )  ->  (
( B  .Q  D
)  +Q  ( B  .Q  P ) ) 
<Q  ( ( B  .Q  D )  +Q  ( R  .Q  X ) ) )
3127, 29, 30syl2anc 408 . . . . . . . 8  |-  ( ph  ->  ( ( B  .Q  D )  +Q  ( B  .Q  P ) ) 
<Q  ( ( B  .Q  D )  +Q  ( R  .Q  X ) ) )
32 ltsonq 7206 . . . . . . . . 9  |-  <Q  Or  Q.
3332, 4sotri 4934 . . . . . . . 8  |-  ( ( ( B  .Q  U
)  <Q  ( ( B  .Q  D )  +Q  ( B  .Q  P
) )  /\  (
( B  .Q  D
)  +Q  ( B  .Q  P ) ) 
<Q  ( ( B  .Q  D )  +Q  ( R  .Q  X ) ) )  ->  ( B  .Q  U )  <Q  (
( B  .Q  D
)  +Q  ( R  .Q  X ) ) )
3423, 31, 33syl2anc 408 . . . . . . 7  |-  ( ph  ->  ( B  .Q  U
)  <Q  ( ( B  .Q  D )  +Q  ( R  .Q  X
) ) )
35 ltmnqi 7211 . . . . . . . . . 10  |-  ( ( R  <Q  U  /\  X  e.  Q. )  ->  ( X  .Q  R
)  <Q  ( X  .Q  U ) )
363, 9, 35syl2anc 408 . . . . . . . . 9  |-  ( ph  ->  ( X  .Q  R
)  <Q  ( X  .Q  U ) )
376simpld 111 . . . . . . . . . 10  |-  ( ph  ->  R  e.  Q. )
38 mulcomnqg 7191 . . . . . . . . . 10  |-  ( ( X  e.  Q.  /\  R  e.  Q. )  ->  ( X  .Q  R
)  =  ( R  .Q  X ) )
399, 37, 38syl2anc 408 . . . . . . . . 9  |-  ( ph  ->  ( X  .Q  R
)  =  ( R  .Q  X ) )
40 mulcomnqg 7191 . . . . . . . . . 10  |-  ( ( X  e.  Q.  /\  U  e.  Q. )  ->  ( X  .Q  U
)  =  ( U  .Q  X ) )
419, 7, 40syl2anc 408 . . . . . . . . 9  |-  ( ph  ->  ( X  .Q  U
)  =  ( U  .Q  X ) )
4236, 39, 413brtr3d 3959 . . . . . . . 8  |-  ( ph  ->  ( R  .Q  X
)  <Q  ( U  .Q  X ) )
43 ltanqi 7210 . . . . . . . 8  |-  ( ( ( R  .Q  X
)  <Q  ( U  .Q  X )  /\  ( B  .Q  D )  e. 
Q. )  ->  (
( B  .Q  D
)  +Q  ( R  .Q  X ) ) 
<Q  ( ( B  .Q  D )  +Q  ( U  .Q  X ) ) )
4442, 29, 43syl2anc 408 . . . . . . 7  |-  ( ph  ->  ( ( B  .Q  D )  +Q  ( R  .Q  X ) ) 
<Q  ( ( B  .Q  D )  +Q  ( U  .Q  X ) ) )
4532, 4sotri 4934 . . . . . . 7  |-  ( ( ( B  .Q  U
)  <Q  ( ( B  .Q  D )  +Q  ( R  .Q  X
) )  /\  (
( B  .Q  D
)  +Q  ( R  .Q  X ) ) 
<Q  ( ( B  .Q  D )  +Q  ( U  .Q  X ) ) )  ->  ( B  .Q  U )  <Q  (
( B  .Q  D
)  +Q  ( U  .Q  X ) ) )
4634, 44, 45syl2anc 408 . . . . . 6  |-  ( ph  ->  ( B  .Q  U
)  <Q  ( ( B  .Q  D )  +Q  ( U  .Q  X
) ) )
4715, 46eqbrtrrd 3952 . . . . 5  |-  ( ph  ->  ( U  .Q  B
)  <Q  ( ( B  .Q  D )  +Q  ( U  .Q  X
) ) )
4812, 47eqbrtrrd 3952 . . . 4  |-  ( ph  ->  ( ( U  .Q  A )  +Q  ( U  .Q  X ) ) 
<Q  ( ( B  .Q  D )  +Q  ( U  .Q  X ) ) )
49 mulclnq 7184 . . . . . 6  |-  ( ( U  e.  Q.  /\  A  e.  Q. )  ->  ( U  .Q  A
)  e.  Q. )
507, 8, 49syl2anc 408 . . . . 5  |-  ( ph  ->  ( U  .Q  A
)  e.  Q. )
51 mulclnq 7184 . . . . . 6  |-  ( ( U  e.  Q.  /\  X  e.  Q. )  ->  ( U  .Q  X
)  e.  Q. )
527, 9, 51syl2anc 408 . . . . 5  |-  ( ph  ->  ( U  .Q  X
)  e.  Q. )
53 addcomnqg 7189 . . . . 5  |-  ( ( ( U  .Q  A
)  e.  Q.  /\  ( U  .Q  X
)  e.  Q. )  ->  ( ( U  .Q  A )  +Q  ( U  .Q  X ) )  =  ( ( U  .Q  X )  +Q  ( U  .Q  A
) ) )
5450, 52, 53syl2anc 408 . . . 4  |-  ( ph  ->  ( ( U  .Q  A )  +Q  ( U  .Q  X ) )  =  ( ( U  .Q  X )  +Q  ( U  .Q  A
) ) )
55 addcomnqg 7189 . . . . 5  |-  ( ( ( B  .Q  D
)  e.  Q.  /\  ( U  .Q  X
)  e.  Q. )  ->  ( ( B  .Q  D )  +Q  ( U  .Q  X ) )  =  ( ( U  .Q  X )  +Q  ( B  .Q  D
) ) )
5629, 52, 55syl2anc 408 . . . 4  |-  ( ph  ->  ( ( B  .Q  D )  +Q  ( U  .Q  X ) )  =  ( ( U  .Q  X )  +Q  ( B  .Q  D
) ) )
5748, 54, 563brtr3d 3959 . . 3  |-  ( ph  ->  ( ( U  .Q  X )  +Q  ( U  .Q  A ) ) 
<Q  ( ( U  .Q  X )  +Q  ( B  .Q  D ) ) )
58 ltanqg 7208 . . . 4  |-  ( ( ( U  .Q  A
)  e.  Q.  /\  ( B  .Q  D
)  e.  Q.  /\  ( U  .Q  X
)  e.  Q. )  ->  ( ( U  .Q  A )  <Q  ( B  .Q  D )  <->  ( ( U  .Q  X )  +Q  ( U  .Q  A
) )  <Q  (
( U  .Q  X
)  +Q  ( B  .Q  D ) ) ) )
5950, 29, 52, 58syl3anc 1216 . . 3  |-  ( ph  ->  ( ( U  .Q  A )  <Q  ( B  .Q  D )  <->  ( ( U  .Q  X )  +Q  ( U  .Q  A
) )  <Q  (
( U  .Q  X
)  +Q  ( B  .Q  D ) ) ) )
6057, 59mpbird 166 . 2  |-  ( ph  ->  ( U  .Q  A
)  <Q  ( B  .Q  D ) )
61 mulcomnqg 7191 . . 3  |-  ( ( B  e.  Q.  /\  D  e.  Q. )  ->  ( B  .Q  D
)  =  ( D  .Q  B ) )
6213, 19, 61syl2anc 408 . 2  |-  ( ph  ->  ( B  .Q  D
)  =  ( D  .Q  B ) )
6360, 62breqtrd 3954 1  |-  ( ph  ->  ( U  .Q  A
)  <Q  ( D  .Q  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331    e. wcel 1480   class class class wbr 3929  (class class class)co 5774   Q.cnq 7088    +Q cplq 7090    .Q cmq 7091    <Q cltq 7093
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-eprel 4211  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-oadd 6317  df-omul 6318  df-er 6429  df-ec 6431  df-qs 6435  df-ni 7112  df-pli 7113  df-mi 7114  df-lti 7115  df-plpq 7152  df-mpq 7153  df-enq 7155  df-nqqs 7156  df-plqqs 7157  df-mqqs 7158  df-ltnqqs 7161
This theorem is referenced by:  prmuloc  7374
  Copyright terms: Public domain W3C validator