ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prmuloclemcalc Unicode version

Theorem prmuloclemcalc 6721
Description: Calculations for prmuloc 6722. (Contributed by Jim Kingdon, 9-Dec-2019.)
Hypotheses
Ref Expression
prmuloclemcalc.ru  |-  ( ph  ->  R  <Q  U )
prmuloclemcalc.udp  |-  ( ph  ->  U  <Q  ( D  +Q  P ) )
prmuloclemcalc.axb  |-  ( ph  ->  ( A  +Q  X
)  =  B )
prmuloclemcalc.pbrx  |-  ( ph  ->  ( P  .Q  B
)  <Q  ( R  .Q  X ) )
prmuloclemcalc.a  |-  ( ph  ->  A  e.  Q. )
prmuloclemcalc.b  |-  ( ph  ->  B  e.  Q. )
prmuloclemcalc.d  |-  ( ph  ->  D  e.  Q. )
prmuloclemcalc.p  |-  ( ph  ->  P  e.  Q. )
prmuloclemcalc.x  |-  ( ph  ->  X  e.  Q. )
Assertion
Ref Expression
prmuloclemcalc  |-  ( ph  ->  ( U  .Q  A
)  <Q  ( D  .Q  B ) )

Proof of Theorem prmuloclemcalc
StepHypRef Expression
1 prmuloclemcalc.axb . . . . . . 7  |-  ( ph  ->  ( A  +Q  X
)  =  B )
21oveq2d 5556 . . . . . 6  |-  ( ph  ->  ( U  .Q  ( A  +Q  X ) )  =  ( U  .Q  B ) )
3 prmuloclemcalc.ru . . . . . . . . 9  |-  ( ph  ->  R  <Q  U )
4 ltrelnq 6521 . . . . . . . . . 10  |-  <Q  C_  ( Q.  X.  Q. )
54brel 4420 . . . . . . . . 9  |-  ( R 
<Q  U  ->  ( R  e.  Q.  /\  U  e.  Q. ) )
63, 5syl 14 . . . . . . . 8  |-  ( ph  ->  ( R  e.  Q.  /\  U  e.  Q. )
)
76simprd 111 . . . . . . 7  |-  ( ph  ->  U  e.  Q. )
8 prmuloclemcalc.a . . . . . . 7  |-  ( ph  ->  A  e.  Q. )
9 prmuloclemcalc.x . . . . . . 7  |-  ( ph  ->  X  e.  Q. )
10 distrnqg 6543 . . . . . . 7  |-  ( ( U  e.  Q.  /\  A  e.  Q.  /\  X  e.  Q. )  ->  ( U  .Q  ( A  +Q  X ) )  =  ( ( U  .Q  A )  +Q  ( U  .Q  X ) ) )
117, 8, 9, 10syl3anc 1146 . . . . . 6  |-  ( ph  ->  ( U  .Q  ( A  +Q  X ) )  =  ( ( U  .Q  A )  +Q  ( U  .Q  X
) ) )
122, 11eqtr3d 2090 . . . . 5  |-  ( ph  ->  ( U  .Q  B
)  =  ( ( U  .Q  A )  +Q  ( U  .Q  X ) ) )
13 prmuloclemcalc.b . . . . . . 7  |-  ( ph  ->  B  e.  Q. )
14 mulcomnqg 6539 . . . . . . 7  |-  ( ( B  e.  Q.  /\  U  e.  Q. )  ->  ( B  .Q  U
)  =  ( U  .Q  B ) )
1513, 7, 14syl2anc 397 . . . . . 6  |-  ( ph  ->  ( B  .Q  U
)  =  ( U  .Q  B ) )
16 prmuloclemcalc.udp . . . . . . . . . 10  |-  ( ph  ->  U  <Q  ( D  +Q  P ) )
17 ltmnqi 6559 . . . . . . . . . 10  |-  ( ( U  <Q  ( D  +Q  P )  /\  B  e.  Q. )  ->  ( B  .Q  U )  <Q 
( B  .Q  ( D  +Q  P ) ) )
1816, 13, 17syl2anc 397 . . . . . . . . 9  |-  ( ph  ->  ( B  .Q  U
)  <Q  ( B  .Q  ( D  +Q  P
) ) )
19 prmuloclemcalc.d . . . . . . . . . 10  |-  ( ph  ->  D  e.  Q. )
20 prmuloclemcalc.p . . . . . . . . . 10  |-  ( ph  ->  P  e.  Q. )
21 distrnqg 6543 . . . . . . . . . 10  |-  ( ( B  e.  Q.  /\  D  e.  Q.  /\  P  e.  Q. )  ->  ( B  .Q  ( D  +Q  P ) )  =  ( ( B  .Q  D )  +Q  ( B  .Q  P ) ) )
2213, 19, 20, 21syl3anc 1146 . . . . . . . . 9  |-  ( ph  ->  ( B  .Q  ( D  +Q  P ) )  =  ( ( B  .Q  D )  +Q  ( B  .Q  P
) ) )
2318, 22breqtrd 3816 . . . . . . . 8  |-  ( ph  ->  ( B  .Q  U
)  <Q  ( ( B  .Q  D )  +Q  ( B  .Q  P
) ) )
24 mulcomnqg 6539 . . . . . . . . . . 11  |-  ( ( P  e.  Q.  /\  B  e.  Q. )  ->  ( P  .Q  B
)  =  ( B  .Q  P ) )
2520, 13, 24syl2anc 397 . . . . . . . . . 10  |-  ( ph  ->  ( P  .Q  B
)  =  ( B  .Q  P ) )
26 prmuloclemcalc.pbrx . . . . . . . . . 10  |-  ( ph  ->  ( P  .Q  B
)  <Q  ( R  .Q  X ) )
2725, 26eqbrtrrd 3814 . . . . . . . . 9  |-  ( ph  ->  ( B  .Q  P
)  <Q  ( R  .Q  X ) )
28 mulclnq 6532 . . . . . . . . . 10  |-  ( ( B  e.  Q.  /\  D  e.  Q. )  ->  ( B  .Q  D
)  e.  Q. )
2913, 19, 28syl2anc 397 . . . . . . . . 9  |-  ( ph  ->  ( B  .Q  D
)  e.  Q. )
30 ltanqi 6558 . . . . . . . . 9  |-  ( ( ( B  .Q  P
)  <Q  ( R  .Q  X )  /\  ( B  .Q  D )  e. 
Q. )  ->  (
( B  .Q  D
)  +Q  ( B  .Q  P ) ) 
<Q  ( ( B  .Q  D )  +Q  ( R  .Q  X ) ) )
3127, 29, 30syl2anc 397 . . . . . . . 8  |-  ( ph  ->  ( ( B  .Q  D )  +Q  ( B  .Q  P ) ) 
<Q  ( ( B  .Q  D )  +Q  ( R  .Q  X ) ) )
32 ltsonq 6554 . . . . . . . . 9  |-  <Q  Or  Q.
3332, 4sotri 4748 . . . . . . . 8  |-  ( ( ( B  .Q  U
)  <Q  ( ( B  .Q  D )  +Q  ( B  .Q  P
) )  /\  (
( B  .Q  D
)  +Q  ( B  .Q  P ) ) 
<Q  ( ( B  .Q  D )  +Q  ( R  .Q  X ) ) )  ->  ( B  .Q  U )  <Q  (
( B  .Q  D
)  +Q  ( R  .Q  X ) ) )
3423, 31, 33syl2anc 397 . . . . . . 7  |-  ( ph  ->  ( B  .Q  U
)  <Q  ( ( B  .Q  D )  +Q  ( R  .Q  X
) ) )
35 ltmnqi 6559 . . . . . . . . . 10  |-  ( ( R  <Q  U  /\  X  e.  Q. )  ->  ( X  .Q  R
)  <Q  ( X  .Q  U ) )
363, 9, 35syl2anc 397 . . . . . . . . 9  |-  ( ph  ->  ( X  .Q  R
)  <Q  ( X  .Q  U ) )
376simpld 109 . . . . . . . . . 10  |-  ( ph  ->  R  e.  Q. )
38 mulcomnqg 6539 . . . . . . . . . 10  |-  ( ( X  e.  Q.  /\  R  e.  Q. )  ->  ( X  .Q  R
)  =  ( R  .Q  X ) )
399, 37, 38syl2anc 397 . . . . . . . . 9  |-  ( ph  ->  ( X  .Q  R
)  =  ( R  .Q  X ) )
40 mulcomnqg 6539 . . . . . . . . . 10  |-  ( ( X  e.  Q.  /\  U  e.  Q. )  ->  ( X  .Q  U
)  =  ( U  .Q  X ) )
419, 7, 40syl2anc 397 . . . . . . . . 9  |-  ( ph  ->  ( X  .Q  U
)  =  ( U  .Q  X ) )
4236, 39, 413brtr3d 3821 . . . . . . . 8  |-  ( ph  ->  ( R  .Q  X
)  <Q  ( U  .Q  X ) )
43 ltanqi 6558 . . . . . . . 8  |-  ( ( ( R  .Q  X
)  <Q  ( U  .Q  X )  /\  ( B  .Q  D )  e. 
Q. )  ->  (
( B  .Q  D
)  +Q  ( R  .Q  X ) ) 
<Q  ( ( B  .Q  D )  +Q  ( U  .Q  X ) ) )
4442, 29, 43syl2anc 397 . . . . . . 7  |-  ( ph  ->  ( ( B  .Q  D )  +Q  ( R  .Q  X ) ) 
<Q  ( ( B  .Q  D )  +Q  ( U  .Q  X ) ) )
4532, 4sotri 4748 . . . . . . 7  |-  ( ( ( B  .Q  U
)  <Q  ( ( B  .Q  D )  +Q  ( R  .Q  X
) )  /\  (
( B  .Q  D
)  +Q  ( R  .Q  X ) ) 
<Q  ( ( B  .Q  D )  +Q  ( U  .Q  X ) ) )  ->  ( B  .Q  U )  <Q  (
( B  .Q  D
)  +Q  ( U  .Q  X ) ) )
4634, 44, 45syl2anc 397 . . . . . 6  |-  ( ph  ->  ( B  .Q  U
)  <Q  ( ( B  .Q  D )  +Q  ( U  .Q  X
) ) )
4715, 46eqbrtrrd 3814 . . . . 5  |-  ( ph  ->  ( U  .Q  B
)  <Q  ( ( B  .Q  D )  +Q  ( U  .Q  X
) ) )
4812, 47eqbrtrrd 3814 . . . 4  |-  ( ph  ->  ( ( U  .Q  A )  +Q  ( U  .Q  X ) ) 
<Q  ( ( B  .Q  D )  +Q  ( U  .Q  X ) ) )
49 mulclnq 6532 . . . . . 6  |-  ( ( U  e.  Q.  /\  A  e.  Q. )  ->  ( U  .Q  A
)  e.  Q. )
507, 8, 49syl2anc 397 . . . . 5  |-  ( ph  ->  ( U  .Q  A
)  e.  Q. )
51 mulclnq 6532 . . . . . 6  |-  ( ( U  e.  Q.  /\  X  e.  Q. )  ->  ( U  .Q  X
)  e.  Q. )
527, 9, 51syl2anc 397 . . . . 5  |-  ( ph  ->  ( U  .Q  X
)  e.  Q. )
53 addcomnqg 6537 . . . . 5  |-  ( ( ( U  .Q  A
)  e.  Q.  /\  ( U  .Q  X
)  e.  Q. )  ->  ( ( U  .Q  A )  +Q  ( U  .Q  X ) )  =  ( ( U  .Q  X )  +Q  ( U  .Q  A
) ) )
5450, 52, 53syl2anc 397 . . . 4  |-  ( ph  ->  ( ( U  .Q  A )  +Q  ( U  .Q  X ) )  =  ( ( U  .Q  X )  +Q  ( U  .Q  A
) ) )
55 addcomnqg 6537 . . . . 5  |-  ( ( ( B  .Q  D
)  e.  Q.  /\  ( U  .Q  X
)  e.  Q. )  ->  ( ( B  .Q  D )  +Q  ( U  .Q  X ) )  =  ( ( U  .Q  X )  +Q  ( B  .Q  D
) ) )
5629, 52, 55syl2anc 397 . . . 4  |-  ( ph  ->  ( ( B  .Q  D )  +Q  ( U  .Q  X ) )  =  ( ( U  .Q  X )  +Q  ( B  .Q  D
) ) )
5748, 54, 563brtr3d 3821 . . 3  |-  ( ph  ->  ( ( U  .Q  X )  +Q  ( U  .Q  A ) ) 
<Q  ( ( U  .Q  X )  +Q  ( B  .Q  D ) ) )
58 ltanqg 6556 . . . 4  |-  ( ( ( U  .Q  A
)  e.  Q.  /\  ( B  .Q  D
)  e.  Q.  /\  ( U  .Q  X
)  e.  Q. )  ->  ( ( U  .Q  A )  <Q  ( B  .Q  D )  <->  ( ( U  .Q  X )  +Q  ( U  .Q  A
) )  <Q  (
( U  .Q  X
)  +Q  ( B  .Q  D ) ) ) )
5950, 29, 52, 58syl3anc 1146 . . 3  |-  ( ph  ->  ( ( U  .Q  A )  <Q  ( B  .Q  D )  <->  ( ( U  .Q  X )  +Q  ( U  .Q  A
) )  <Q  (
( U  .Q  X
)  +Q  ( B  .Q  D ) ) ) )
6057, 59mpbird 160 . 2  |-  ( ph  ->  ( U  .Q  A
)  <Q  ( B  .Q  D ) )
61 mulcomnqg 6539 . . 3  |-  ( ( B  e.  Q.  /\  D  e.  Q. )  ->  ( B  .Q  D
)  =  ( D  .Q  B ) )
6213, 19, 61syl2anc 397 . 2  |-  ( ph  ->  ( B  .Q  D
)  =  ( D  .Q  B ) )
6360, 62breqtrd 3816 1  |-  ( ph  ->  ( U  .Q  A
)  <Q  ( D  .Q  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 101    <-> wb 102    = wceq 1259    e. wcel 1409   class class class wbr 3792  (class class class)co 5540   Q.cnq 6436    +Q cplq 6438    .Q cmq 6439    <Q cltq 6441
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-coll 3900  ax-sep 3903  ax-nul 3911  ax-pow 3955  ax-pr 3972  ax-un 4198  ax-setind 4290  ax-iinf 4339
This theorem depends on definitions:  df-bi 114  df-dc 754  df-3or 897  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-ral 2328  df-rex 2329  df-reu 2330  df-rab 2332  df-v 2576  df-sbc 2788  df-csb 2881  df-dif 2948  df-un 2950  df-in 2952  df-ss 2959  df-nul 3253  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-int 3644  df-iun 3687  df-br 3793  df-opab 3847  df-mpt 3848  df-tr 3883  df-eprel 4054  df-id 4058  df-po 4061  df-iso 4062  df-iord 4131  df-on 4133  df-suc 4136  df-iom 4342  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382  df-dm 4383  df-rn 4384  df-res 4385  df-ima 4386  df-iota 4895  df-fun 4932  df-fn 4933  df-f 4934  df-f1 4935  df-fo 4936  df-f1o 4937  df-fv 4938  df-ov 5543  df-oprab 5544  df-mpt2 5545  df-1st 5795  df-2nd 5796  df-recs 5951  df-irdg 5988  df-oadd 6036  df-omul 6037  df-er 6137  df-ec 6139  df-qs 6143  df-ni 6460  df-pli 6461  df-mi 6462  df-lti 6463  df-plpq 6500  df-mpq 6501  df-enq 6503  df-nqqs 6504  df-plqqs 6505  df-mqqs 6506  df-ltnqqs 6509
This theorem is referenced by:  prmuloc  6722
  Copyright terms: Public domain W3C validator