ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prnmaxl Unicode version

Theorem prnmaxl 6729
Description: A lower cut has no largest member. (Contributed by Jim Kingdon, 29-Sep-2019.)
Assertion
Ref Expression
prnmaxl  |-  ( (
<. L ,  U >.  e. 
P.  /\  B  e.  L )  ->  E. x  e.  L  B  <Q  x )
Distinct variable groups:    x, B    x, L    x, U

Proof of Theorem prnmaxl
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 elprnql 6722 . . . . 5  |-  ( (
<. L ,  U >.  e. 
P.  /\  B  e.  L )  ->  B  e.  Q. )
2 elinp 6715 . . . . . . . 8  |-  ( <. L ,  U >.  e. 
P. 
<->  ( ( ( L 
C_  Q.  /\  U  C_  Q. )  /\  ( E. y  e.  Q.  y  e.  L  /\  E. x  e.  Q.  x  e.  U ) )  /\  ( ( A. y  e.  Q.  ( y  e.  L  <->  E. x  e.  Q.  ( y  <Q  x  /\  x  e.  L
) )  /\  A. x  e.  Q.  (
x  e.  U  <->  E. y  e.  Q.  ( y  <Q  x  /\  y  e.  U
) ) )  /\  A. y  e.  Q.  -.  ( y  e.  L  /\  y  e.  U
)  /\  A. y  e.  Q.  A. x  e. 
Q.  ( y  <Q  x  ->  ( y  e.  L  \/  x  e.  U ) ) ) ) )
3 simpr1l 996 . . . . . . . 8  |-  ( ( ( ( L  C_  Q.  /\  U  C_  Q. )  /\  ( E. y  e.  Q.  y  e.  L  /\  E. x  e.  Q.  x  e.  U )
)  /\  ( ( A. y  e.  Q.  ( y  e.  L  <->  E. x  e.  Q.  (
y  <Q  x  /\  x  e.  L ) )  /\  A. x  e.  Q.  (
x  e.  U  <->  E. y  e.  Q.  ( y  <Q  x  /\  y  e.  U
) ) )  /\  A. y  e.  Q.  -.  ( y  e.  L  /\  y  e.  U
)  /\  A. y  e.  Q.  A. x  e. 
Q.  ( y  <Q  x  ->  ( y  e.  L  \/  x  e.  U ) ) ) )  ->  A. y  e.  Q.  ( y  e.  L  <->  E. x  e.  Q.  ( y  <Q  x  /\  x  e.  L
) ) )
42, 3sylbi 119 . . . . . . 7  |-  ( <. L ,  U >.  e. 
P.  ->  A. y  e.  Q.  ( y  e.  L  <->  E. x  e.  Q.  (
y  <Q  x  /\  x  e.  L ) ) )
5 eleq1 2142 . . . . . . . . 9  |-  ( y  =  B  ->  (
y  e.  L  <->  B  e.  L ) )
6 breq1 3790 . . . . . . . . . . 11  |-  ( y  =  B  ->  (
y  <Q  x  <->  B  <Q  x ) )
76anbi1d 453 . . . . . . . . . 10  |-  ( y  =  B  ->  (
( y  <Q  x  /\  x  e.  L
)  <->  ( B  <Q  x  /\  x  e.  L
) ) )
87rexbidv 2370 . . . . . . . . 9  |-  ( y  =  B  ->  ( E. x  e.  Q.  ( y  <Q  x  /\  x  e.  L
)  <->  E. x  e.  Q.  ( B  <Q  x  /\  x  e.  L )
) )
95, 8bibi12d 233 . . . . . . . 8  |-  ( y  =  B  ->  (
( y  e.  L  <->  E. x  e.  Q.  (
y  <Q  x  /\  x  e.  L ) )  <->  ( B  e.  L  <->  E. x  e.  Q.  ( B  <Q  x  /\  x  e.  L )
) ) )
109rspcv 2698 . . . . . . 7  |-  ( B  e.  Q.  ->  ( A. y  e.  Q.  ( y  e.  L  <->  E. x  e.  Q.  (
y  <Q  x  /\  x  e.  L ) )  -> 
( B  e.  L  <->  E. x  e.  Q.  ( B  <Q  x  /\  x  e.  L ) ) ) )
11 bi1 116 . . . . . . 7  |-  ( ( B  e.  L  <->  E. x  e.  Q.  ( B  <Q  x  /\  x  e.  L
) )  ->  ( B  e.  L  ->  E. x  e.  Q.  ( B  <Q  x  /\  x  e.  L ) ) )
124, 10, 11syl56 34 . . . . . 6  |-  ( B  e.  Q.  ->  ( <. L ,  U >.  e. 
P.  ->  ( B  e.  L  ->  E. x  e.  Q.  ( B  <Q  x  /\  x  e.  L
) ) ) )
1312impd 251 . . . . 5  |-  ( B  e.  Q.  ->  (
( <. L ,  U >.  e.  P.  /\  B  e.  L )  ->  E. x  e.  Q.  ( B  <Q  x  /\  x  e.  L
) ) )
141, 13mpcom 36 . . . 4  |-  ( (
<. L ,  U >.  e. 
P.  /\  B  e.  L )  ->  E. x  e.  Q.  ( B  <Q  x  /\  x  e.  L
) )
15 df-rex 2355 . . . 4  |-  ( E. x  e.  Q.  ( B  <Q  x  /\  x  e.  L )  <->  E. x
( x  e.  Q.  /\  ( B  <Q  x  /\  x  e.  L
) ) )
1614, 15sylib 120 . . 3  |-  ( (
<. L ,  U >.  e. 
P.  /\  B  e.  L )  ->  E. x
( x  e.  Q.  /\  ( B  <Q  x  /\  x  e.  L
) ) )
17 ltrelnq 6606 . . . . . . . . 9  |-  <Q  C_  ( Q.  X.  Q. )
1817brel 4412 . . . . . . . 8  |-  ( B 
<Q  x  ->  ( B  e.  Q.  /\  x  e.  Q. ) )
1918simprd 112 . . . . . . 7  |-  ( B 
<Q  x  ->  x  e. 
Q. )
2019pm4.71ri 384 . . . . . 6  |-  ( B 
<Q  x  <->  ( x  e. 
Q.  /\  B  <Q  x ) )
2120anbi1i 446 . . . . 5  |-  ( ( B  <Q  x  /\  x  e.  L )  <->  ( ( x  e.  Q.  /\  B  <Q  x )  /\  x  e.  L
) )
22 ancom 262 . . . . 5  |-  ( ( B  <Q  x  /\  x  e.  L )  <->  ( x  e.  L  /\  B  <Q  x ) )
23 anass 393 . . . . 5  |-  ( ( ( x  e.  Q.  /\  B  <Q  x )  /\  x  e.  L
)  <->  ( x  e. 
Q.  /\  ( B  <Q  x  /\  x  e.  L ) ) )
2421, 22, 233bitr3i 208 . . . 4  |-  ( ( x  e.  L  /\  B  <Q  x )  <->  ( x  e.  Q.  /\  ( B 
<Q  x  /\  x  e.  L ) ) )
2524exbii 1537 . . 3  |-  ( E. x ( x  e.  L  /\  B  <Q  x )  <->  E. x ( x  e.  Q.  /\  ( B  <Q  x  /\  x  e.  L ) ) )
2616, 25sylibr 132 . 2  |-  ( (
<. L ,  U >.  e. 
P.  /\  B  e.  L )  ->  E. x
( x  e.  L  /\  B  <Q  x ) )
27 df-rex 2355 . 2  |-  ( E. x  e.  L  B  <Q  x  <->  E. x ( x  e.  L  /\  B  <Q  x ) )
2826, 27sylibr 132 1  |-  ( (
<. L ,  U >.  e. 
P.  /\  B  e.  L )  ->  E. x  e.  L  B  <Q  x )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    <-> wb 103    \/ wo 662    /\ w3a 920    = wceq 1285   E.wex 1422    e. wcel 1434   A.wral 2349   E.wrex 2350    C_ wss 2974   <.cop 3403   class class class wbr 3787   Q.cnq 6521    <Q cltq 6526   P.cnp 6532
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-coll 3895  ax-sep 3898  ax-pow 3950  ax-pr 3966  ax-un 4190  ax-iinf 4331
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ral 2354  df-rex 2355  df-reu 2356  df-rab 2358  df-v 2604  df-sbc 2817  df-csb 2910  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-pw 3386  df-sn 3406  df-pr 3407  df-op 3409  df-uni 3604  df-int 3639  df-iun 3682  df-br 3788  df-opab 3842  df-mpt 3843  df-id 4050  df-iom 4334  df-xp 4371  df-rel 4372  df-cnv 4373  df-co 4374  df-dm 4375  df-rn 4376  df-res 4377  df-ima 4378  df-iota 4891  df-fun 4928  df-fn 4929  df-f 4930  df-f1 4931  df-fo 4932  df-f1o 4933  df-fv 4934  df-qs 6171  df-ni 6545  df-nqqs 6589  df-ltnqqs 6594  df-inp 6707
This theorem is referenced by:  prnmaddl  6731  genprndl  6762  nqprl  6792  1idprl  6831  ltsopr  6837  ltexprlemm  6841  ltexprlemopl  6842  recexprlemloc  6872  recexprlem1ssl  6874  aptiprleml  6880  caucvgprprlemopl  6938
  Copyright terms: Public domain W3C validator