ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prprc1 Unicode version

Theorem prprc1 3508
Description: A proper class vanishes in an unordered pair. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
prprc1  |-  ( -.  A  e.  _V  ->  { A ,  B }  =  { B } )

Proof of Theorem prprc1
StepHypRef Expression
1 snprc 3465 . 2  |-  ( -.  A  e.  _V  <->  { A }  =  (/) )
2 uneq1 3120 . . 3  |-  ( { A }  =  (/)  ->  ( { A }  u.  { B } )  =  ( (/)  u.  { B } ) )
3 df-pr 3413 . . 3  |-  { A ,  B }  =  ( { A }  u.  { B } )
4 uncom 3117 . . . 4  |-  ( (/)  u. 
{ B } )  =  ( { B }  u.  (/) )
5 un0 3285 . . . 4  |-  ( { B }  u.  (/) )  =  { B }
64, 5eqtr2i 2103 . . 3  |-  { B }  =  ( (/)  u.  { B } )
72, 3, 63eqtr4g 2139 . 2  |-  ( { A }  =  (/)  ->  { A ,  B }  =  { B } )
81, 7sylbi 119 1  |-  ( -.  A  e.  _V  ->  { A ,  B }  =  { B } )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1285    e. wcel 1434   _Vcvv 2602    u. cun 2972   (/)c0 3258   {csn 3406   {cpr 3407
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064
This theorem depends on definitions:  df-bi 115  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1687  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-v 2604  df-dif 2976  df-un 2978  df-nul 3259  df-sn 3412  df-pr 3413
This theorem is referenced by:  prprc2  3509  prprc  3510
  Copyright terms: Public domain W3C validator