ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pw2dvdseu Unicode version

Theorem pw2dvdseu 11835
Description: A natural number has a unique highest power of two which divides it. (Contributed by Jim Kingdon, 16-Nov-2021.)
Assertion
Ref Expression
pw2dvdseu  |-  ( N  e.  NN  ->  E! m  e.  NN0  ( ( 2 ^ m ) 
||  N  /\  -.  ( 2 ^ (
m  +  1 ) )  ||  N ) )
Distinct variable group:    m, N

Proof of Theorem pw2dvdseu
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 pw2dvds 11833 . 2  |-  ( N  e.  NN  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  + 
1 ) )  ||  N ) )
2 simpll 518 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( m  e.  NN0  /\  x  e.  NN0 )
)  /\  ( (
( 2 ^ m
)  ||  N  /\  -.  ( 2 ^ (
m  +  1 ) )  ||  N )  /\  ( ( 2 ^ x )  ||  N  /\  -.  ( 2 ^ ( x  + 
1 ) )  ||  N ) ) )  ->  N  e.  NN )
3 simplrl 524 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( m  e.  NN0  /\  x  e.  NN0 )
)  /\  ( (
( 2 ^ m
)  ||  N  /\  -.  ( 2 ^ (
m  +  1 ) )  ||  N )  /\  ( ( 2 ^ x )  ||  N  /\  -.  ( 2 ^ ( x  + 
1 ) )  ||  N ) ) )  ->  m  e.  NN0 )
4 simplrr 525 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( m  e.  NN0  /\  x  e.  NN0 )
)  /\  ( (
( 2 ^ m
)  ||  N  /\  -.  ( 2 ^ (
m  +  1 ) )  ||  N )  /\  ( ( 2 ^ x )  ||  N  /\  -.  ( 2 ^ ( x  + 
1 ) )  ||  N ) ) )  ->  x  e.  NN0 )
5 simprll 526 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( m  e.  NN0  /\  x  e.  NN0 )
)  /\  ( (
( 2 ^ m
)  ||  N  /\  -.  ( 2 ^ (
m  +  1 ) )  ||  N )  /\  ( ( 2 ^ x )  ||  N  /\  -.  ( 2 ^ ( x  + 
1 ) )  ||  N ) ) )  ->  ( 2 ^ m )  ||  N
)
6 simprrr 529 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( m  e.  NN0  /\  x  e.  NN0 )
)  /\  ( (
( 2 ^ m
)  ||  N  /\  -.  ( 2 ^ (
m  +  1 ) )  ||  N )  /\  ( ( 2 ^ x )  ||  N  /\  -.  ( 2 ^ ( x  + 
1 ) )  ||  N ) ) )  ->  -.  ( 2 ^ ( x  + 
1 ) )  ||  N )
72, 3, 4, 5, 6pw2dvdseulemle 11834 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( m  e.  NN0  /\  x  e.  NN0 )
)  /\  ( (
( 2 ^ m
)  ||  N  /\  -.  ( 2 ^ (
m  +  1 ) )  ||  N )  /\  ( ( 2 ^ x )  ||  N  /\  -.  ( 2 ^ ( x  + 
1 ) )  ||  N ) ) )  ->  m  <_  x
)
8 simprrl 528 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( m  e.  NN0  /\  x  e.  NN0 )
)  /\  ( (
( 2 ^ m
)  ||  N  /\  -.  ( 2 ^ (
m  +  1 ) )  ||  N )  /\  ( ( 2 ^ x )  ||  N  /\  -.  ( 2 ^ ( x  + 
1 ) )  ||  N ) ) )  ->  ( 2 ^ x )  ||  N
)
9 simprlr 527 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( m  e.  NN0  /\  x  e.  NN0 )
)  /\  ( (
( 2 ^ m
)  ||  N  /\  -.  ( 2 ^ (
m  +  1 ) )  ||  N )  /\  ( ( 2 ^ x )  ||  N  /\  -.  ( 2 ^ ( x  + 
1 ) )  ||  N ) ) )  ->  -.  ( 2 ^ ( m  + 
1 ) )  ||  N )
102, 4, 3, 8, 9pw2dvdseulemle 11834 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( m  e.  NN0  /\  x  e.  NN0 )
)  /\  ( (
( 2 ^ m
)  ||  N  /\  -.  ( 2 ^ (
m  +  1 ) )  ||  N )  /\  ( ( 2 ^ x )  ||  N  /\  -.  ( 2 ^ ( x  + 
1 ) )  ||  N ) ) )  ->  x  <_  m
)
113nn0red 9024 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( m  e.  NN0  /\  x  e.  NN0 )
)  /\  ( (
( 2 ^ m
)  ||  N  /\  -.  ( 2 ^ (
m  +  1 ) )  ||  N )  /\  ( ( 2 ^ x )  ||  N  /\  -.  ( 2 ^ ( x  + 
1 ) )  ||  N ) ) )  ->  m  e.  RR )
124nn0red 9024 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( m  e.  NN0  /\  x  e.  NN0 )
)  /\  ( (
( 2 ^ m
)  ||  N  /\  -.  ( 2 ^ (
m  +  1 ) )  ||  N )  /\  ( ( 2 ^ x )  ||  N  /\  -.  ( 2 ^ ( x  + 
1 ) )  ||  N ) ) )  ->  x  e.  RR )
1311, 12letri3d 7872 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( m  e.  NN0  /\  x  e.  NN0 )
)  /\  ( (
( 2 ^ m
)  ||  N  /\  -.  ( 2 ^ (
m  +  1 ) )  ||  N )  /\  ( ( 2 ^ x )  ||  N  /\  -.  ( 2 ^ ( x  + 
1 ) )  ||  N ) ) )  ->  ( m  =  x  <->  ( m  <_  x  /\  x  <_  m
) ) )
147, 10, 13mpbir2and 928 . . . . 5  |-  ( ( ( N  e.  NN  /\  ( m  e.  NN0  /\  x  e.  NN0 )
)  /\  ( (
( 2 ^ m
)  ||  N  /\  -.  ( 2 ^ (
m  +  1 ) )  ||  N )  /\  ( ( 2 ^ x )  ||  N  /\  -.  ( 2 ^ ( x  + 
1 ) )  ||  N ) ) )  ->  m  =  x )
1514ex 114 . . . 4  |-  ( ( N  e.  NN  /\  ( m  e.  NN0  /\  x  e.  NN0 )
)  ->  ( (
( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
)  /\  ( (
2 ^ x ) 
||  N  /\  -.  ( 2 ^ (
x  +  1 ) )  ||  N ) )  ->  m  =  x ) )
1615ralrimivva 2512 . . 3  |-  ( N  e.  NN  ->  A. m  e.  NN0  A. x  e. 
NN0  ( ( ( ( 2 ^ m
)  ||  N  /\  -.  ( 2 ^ (
m  +  1 ) )  ||  N )  /\  ( ( 2 ^ x )  ||  N  /\  -.  ( 2 ^ ( x  + 
1 ) )  ||  N ) )  ->  m  =  x )
)
17 oveq2 5775 . . . . . 6  |-  ( m  =  x  ->  (
2 ^ m )  =  ( 2 ^ x ) )
1817breq1d 3934 . . . . 5  |-  ( m  =  x  ->  (
( 2 ^ m
)  ||  N  <->  ( 2 ^ x )  ||  N ) )
19 oveq1 5774 . . . . . . . 8  |-  ( m  =  x  ->  (
m  +  1 )  =  ( x  + 
1 ) )
2019oveq2d 5783 . . . . . . 7  |-  ( m  =  x  ->  (
2 ^ ( m  +  1 ) )  =  ( 2 ^ ( x  +  1 ) ) )
2120breq1d 3934 . . . . . 6  |-  ( m  =  x  ->  (
( 2 ^ (
m  +  1 ) )  ||  N  <->  ( 2 ^ ( x  + 
1 ) )  ||  N ) )
2221notbid 656 . . . . 5  |-  ( m  =  x  ->  ( -.  ( 2 ^ (
m  +  1 ) )  ||  N  <->  -.  (
2 ^ ( x  +  1 ) ) 
||  N ) )
2318, 22anbi12d 464 . . . 4  |-  ( m  =  x  ->  (
( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
)  <->  ( ( 2 ^ x )  ||  N  /\  -.  ( 2 ^ ( x  + 
1 ) )  ||  N ) ) )
2423rmo4 2872 . . 3  |-  ( E* m  e.  NN0  (
( 2 ^ m
)  ||  N  /\  -.  ( 2 ^ (
m  +  1 ) )  ||  N )  <->  A. m  e.  NN0  A. x  e.  NN0  (
( ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  + 
1 ) )  ||  N )  /\  (
( 2 ^ x
)  ||  N  /\  -.  ( 2 ^ (
x  +  1 ) )  ||  N ) )  ->  m  =  x ) )
2516, 24sylibr 133 . 2  |-  ( N  e.  NN  ->  E* m  e.  NN0  ( ( 2 ^ m ) 
||  N  /\  -.  ( 2 ^ (
m  +  1 ) )  ||  N ) )
26 reu5 2641 . 2  |-  ( E! m  e.  NN0  (
( 2 ^ m
)  ||  N  /\  -.  ( 2 ^ (
m  +  1 ) )  ||  N )  <-> 
( E. m  e. 
NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  + 
1 ) )  ||  N )  /\  E* m  e.  NN0  ( ( 2 ^ m ) 
||  N  /\  -.  ( 2 ^ (
m  +  1 ) )  ||  N ) ) )
271, 25, 26sylanbrc 413 1  |-  ( N  e.  NN  ->  E! m  e.  NN0  ( ( 2 ^ m ) 
||  N  /\  -.  ( 2 ^ (
m  +  1 ) )  ||  N ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    e. wcel 1480   A.wral 2414   E.wrex 2415   E!wreu 2416   E*wrmo 2417   class class class wbr 3924  (class class class)co 5767   1c1 7614    + caddc 7616    <_ cle 7794   NNcn 8713   2c2 8764   NN0cn0 8970   ^cexp 10285    || cdvds 11482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-mulrcl 7712  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-mulass 7716  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-1rid 7720  ax-0id 7721  ax-rnegex 7722  ax-precex 7723  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729  ax-pre-mulgt0 7730  ax-pre-mulext 7731  ax-arch 7732
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rmo 2422  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-if 3470  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-id 4210  df-po 4213  df-iso 4214  df-iord 4283  df-on 4285  df-ilim 4286  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-frec 6281  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-reap 8330  df-ap 8337  df-div 8426  df-inn 8714  df-2 8772  df-n0 8971  df-z 9048  df-uz 9320  df-q 9405  df-rp 9435  df-fz 9784  df-fl 10036  df-mod 10089  df-seqfrec 10212  df-exp 10286  df-dvds 11483
This theorem is referenced by:  oddpwdclemxy  11836  oddpwdclemdvds  11837  oddpwdclemndvds  11838  oddpwdclemodd  11839  oddpwdclemdc  11840  oddpwdc  11841
  Copyright terms: Public domain W3C validator