ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pweqi Unicode version

Theorem pweqi 3404
Description: Equality inference for power class. (Contributed by NM, 27-Nov-2013.)
Hypothesis
Ref Expression
pweqi.1  |-  A  =  B
Assertion
Ref Expression
pweqi  |-  ~P A  =  ~P B

Proof of Theorem pweqi
StepHypRef Expression
1 pweqi.1 . 2  |-  A  =  B
2 pweq 3403 . 2  |-  ( A  =  B  ->  ~P A  =  ~P B
)
31, 2ax-mp 7 1  |-  ~P A  =  ~P B
Colors of variables: wff set class
Syntax hints:    = wceq 1285   ~Pcpw 3400
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-11 1438  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065
This theorem depends on definitions:  df-bi 115  df-tru 1288  df-nf 1391  df-sb 1688  df-clab 2070  df-cleq 2076  df-clel 2079  df-in 2988  df-ss 2995  df-pw 3402
This theorem is referenced by:  mnfnre  7293
  Copyright terms: Public domain W3C validator