ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qdassr Unicode version

Theorem qdassr 3496
Description: Two ways to write an unordered quadruple. (Contributed by Mario Carneiro, 5-Jan-2016.)
Assertion
Ref Expression
qdassr  |-  ( { A ,  B }  u.  { C ,  D } )  =  ( { A }  u.  { B ,  C ,  D } )

Proof of Theorem qdassr
StepHypRef Expression
1 unass 3128 . 2  |-  ( ( { A }  u.  { B } )  u. 
{ C ,  D } )  =  ( { A }  u.  ( { B }  u.  { C ,  D }
) )
2 df-pr 3410 . . 3  |-  { A ,  B }  =  ( { A }  u.  { B } )
32uneq1i 3121 . 2  |-  ( { A ,  B }  u.  { C ,  D } )  =  ( ( { A }  u.  { B } )  u.  { C ,  D } )
4 tpass 3494 . . 3  |-  { B ,  C ,  D }  =  ( { B }  u.  { C ,  D } )
54uneq2i 3122 . 2  |-  ( { A }  u.  { B ,  C ,  D } )  =  ( { A }  u.  ( { B }  u.  { C ,  D }
) )
61, 3, 53eqtr4i 2086 1  |-  ( { A ,  B }  u.  { C ,  D } )  =  ( { A }  u.  { B ,  C ,  D } )
Colors of variables: wff set class
Syntax hints:    = wceq 1259    u. cun 2943   {csn 3403   {cpr 3404   {ctp 3405
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038
This theorem depends on definitions:  df-bi 114  df-3or 897  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-v 2576  df-un 2950  df-sn 3409  df-pr 3410  df-tp 3411
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator