Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  qdencn Unicode version

Theorem qdencn 10943
Description: The set of complex numbers whose real and imaginary parts are rational is dense in the complex plane. This is a two dimensional analogue to qdenre 10226 (and also would hold for  RR  X.  RR with the usual metric; this is not about complex numbers in particular). (Contributed by Jim Kingdon, 18-Oct-2021.)
Hypothesis
Ref Expression
qdencn.q  |-  Q  =  { z  e.  CC  |  ( ( Re
`  z )  e.  QQ  /\  ( Im
`  z )  e.  QQ ) }
Assertion
Ref Expression
qdencn  |-  ( ( A  e.  CC  /\  B  e.  RR+ )  ->  E. x  e.  Q  ( abs `  ( x  -  A ) )  <  B )
Distinct variable groups:    x, A    x, B    x, Q
Allowed substitution hints:    A( z)    B( z)    Q( z)

Proof of Theorem qdencn
Dummy variables  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 107 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  RR+ )  ->  A  e.  CC )
21recld 9963 . . 3  |-  ( ( A  e.  CC  /\  B  e.  RR+ )  -> 
( Re `  A
)  e.  RR )
3 simpr 108 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  RR+ )  ->  B  e.  RR+ )
43rphalfcld 8867 . . 3  |-  ( ( A  e.  CC  /\  B  e.  RR+ )  -> 
( B  /  2
)  e.  RR+ )
5 qdenre 10226 . . 3  |-  ( ( ( Re `  A
)  e.  RR  /\  ( B  /  2
)  e.  RR+ )  ->  E. u  e.  QQ  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) )
62, 4, 5syl2anc 403 . 2  |-  ( ( A  e.  CC  /\  B  e.  RR+ )  ->  E. u  e.  QQ  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) )
7 simpll 496 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  ( u  e.  QQ  /\  ( abs `  (
u  -  ( Re
`  A ) ) )  <  ( B  /  2 ) ) )  ->  A  e.  CC )
87imcld 9964 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  ( u  e.  QQ  /\  ( abs `  (
u  -  ( Re
`  A ) ) )  <  ( B  /  2 ) ) )  ->  ( Im `  A )  e.  RR )
94adantr 270 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  ( u  e.  QQ  /\  ( abs `  (
u  -  ( Re
`  A ) ) )  <  ( B  /  2 ) ) )  ->  ( B  /  2 )  e.  RR+ )
10 qdenre 10226 . . . 4  |-  ( ( ( Im `  A
)  e.  RR  /\  ( B  /  2
)  e.  RR+ )  ->  E. v  e.  QQ  ( abs `  ( v  -  ( Im `  A ) ) )  <  ( B  / 
2 ) )
118, 9, 10syl2anc 403 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  ( u  e.  QQ  /\  ( abs `  (
u  -  ( Re
`  A ) ) )  <  ( B  /  2 ) ) )  ->  E. v  e.  QQ  ( abs `  (
v  -  ( Im
`  A ) ) )  <  ( B  /  2 ) )
12 qcn 8800 . . . . . . . 8  |-  ( u  e.  QQ  ->  u  e.  CC )
1312ad2antrl 474 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  ( u  e.  QQ  /\  ( abs `  (
u  -  ( Re
`  A ) ) )  <  ( B  /  2 ) ) )  ->  u  e.  CC )
1413adantr 270 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  u  e.  CC )
15 ax-icn 7133 . . . . . . . 8  |-  _i  e.  CC
1615a1i 9 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  _i  e.  CC )
17 qcn 8800 . . . . . . . 8  |-  ( v  e.  QQ  ->  v  e.  CC )
1817ad2antrl 474 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  v  e.  CC )
1916, 18mulcld 7201 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( _i  x.  v )  e.  CC )
2014, 19addcld 7200 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( u  +  ( _i  x.  v ) )  e.  CC )
21 qre 8791 . . . . . . . . . 10  |-  ( u  e.  QQ  ->  u  e.  RR )
2221ad2antrl 474 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  ( u  e.  QQ  /\  ( abs `  (
u  -  ( Re
`  A ) ) )  <  ( B  /  2 ) ) )  ->  u  e.  RR )
2322adantr 270 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  u  e.  RR )
24 qre 8791 . . . . . . . . 9  |-  ( v  e.  QQ  ->  v  e.  RR )
2524ad2antrl 474 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  v  e.  RR )
2623, 25crred 10001 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( Re `  ( u  +  ( _i  x.  v ) ) )  =  u )
27 simplrl 502 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  u  e.  QQ )
2826, 27eqeltrd 2156 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( Re `  ( u  +  ( _i  x.  v ) ) )  e.  QQ )
2923, 25crimd 10002 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( Im `  ( u  +  ( _i  x.  v ) ) )  =  v )
30 simprl 498 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  v  e.  QQ )
3129, 30eqeltrd 2156 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( Im `  ( u  +  ( _i  x.  v ) ) )  e.  QQ )
3228, 31jca 300 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( (
Re `  ( u  +  ( _i  x.  v ) ) )  e.  QQ  /\  (
Im `  ( u  +  ( _i  x.  v ) ) )  e.  QQ ) )
33 fveq2 5209 . . . . . . . 8  |-  ( z  =  ( u  +  ( _i  x.  v
) )  ->  (
Re `  z )  =  ( Re `  ( u  +  (
_i  x.  v )
) ) )
3433eleq1d 2148 . . . . . . 7  |-  ( z  =  ( u  +  ( _i  x.  v
) )  ->  (
( Re `  z
)  e.  QQ  <->  ( Re `  ( u  +  ( _i  x.  v ) ) )  e.  QQ ) )
35 fveq2 5209 . . . . . . . 8  |-  ( z  =  ( u  +  ( _i  x.  v
) )  ->  (
Im `  z )  =  ( Im `  ( u  +  (
_i  x.  v )
) ) )
3635eleq1d 2148 . . . . . . 7  |-  ( z  =  ( u  +  ( _i  x.  v
) )  ->  (
( Im `  z
)  e.  QQ  <->  ( Im `  ( u  +  ( _i  x.  v ) ) )  e.  QQ ) )
3734, 36anbi12d 457 . . . . . 6  |-  ( z  =  ( u  +  ( _i  x.  v
) )  ->  (
( ( Re `  z )  e.  QQ  /\  ( Im `  z
)  e.  QQ )  <-> 
( ( Re `  ( u  +  (
_i  x.  v )
) )  e.  QQ  /\  ( Im `  (
u  +  ( _i  x.  v ) ) )  e.  QQ ) ) )
38 qdencn.q . . . . . 6  |-  Q  =  { z  e.  CC  |  ( ( Re
`  z )  e.  QQ  /\  ( Im
`  z )  e.  QQ ) }
3937, 38elrab2 2752 . . . . 5  |-  ( ( u  +  ( _i  x.  v ) )  e.  Q  <->  ( (
u  +  ( _i  x.  v ) )  e.  CC  /\  (
( Re `  (
u  +  ( _i  x.  v ) ) )  e.  QQ  /\  ( Im `  ( u  +  ( _i  x.  v ) ) )  e.  QQ ) ) )
4020, 32, 39sylanbrc 408 . . . 4  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( u  +  ( _i  x.  v ) )  e.  Q )
417adantr 270 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  A  e.  CC )
4220, 41subcld 7486 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( (
u  +  ( _i  x.  v ) )  -  A )  e.  CC )
4342abscld 10205 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( abs `  ( ( u  +  ( _i  x.  v
) )  -  A
) )  e.  RR )
442ad2antrr 472 . . . . . . . . 9  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( Re `  A )  e.  RR )
4544recnd 7209 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( Re `  A )  e.  CC )
4614, 45subcld 7486 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( u  -  ( Re `  A ) )  e.  CC )
4746abscld 10205 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( abs `  ( u  -  (
Re `  A )
) )  e.  RR )
488adantr 270 . . . . . . . . 9  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( Im `  A )  e.  RR )
4948recnd 7209 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( Im `  A )  e.  CC )
5018, 49subcld 7486 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( v  -  ( Im `  A ) )  e.  CC )
5150abscld 10205 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( abs `  ( v  -  (
Im `  A )
) )  e.  RR )
5247, 51readdcld 7210 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( ( abs `  ( u  -  ( Re `  A ) ) )  +  ( abs `  ( v  -  ( Im `  A ) ) ) )  e.  RR )
533ad2antrr 472 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  B  e.  RR+ )
5453rpred 8854 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  B  e.  RR )
551replimd 9966 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  B  e.  RR+ )  ->  A  =  ( (
Re `  A )  +  ( _i  x.  ( Im `  A ) ) ) )
5655oveq2d 5559 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  B  e.  RR+ )  -> 
( ( u  +  ( _i  x.  v
) )  -  A
)  =  ( ( u  +  ( _i  x.  v ) )  -  ( ( Re
`  A )  +  ( _i  x.  (
Im `  A )
) ) ) )
5756ad2antrr 472 . . . . . . . . 9  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( (
u  +  ( _i  x.  v ) )  -  A )  =  ( ( u  +  ( _i  x.  v
) )  -  (
( Re `  A
)  +  ( _i  x.  ( Im `  A ) ) ) ) )
5816, 49mulcld 7201 . . . . . . . . . 10  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( _i  x.  ( Im `  A
) )  e.  CC )
5914, 19, 45, 58addsub4d 7533 . . . . . . . . 9  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( (
u  +  ( _i  x.  v ) )  -  ( ( Re
`  A )  +  ( _i  x.  (
Im `  A )
) ) )  =  ( ( u  -  ( Re `  A ) )  +  ( ( _i  x.  v )  -  ( _i  x.  ( Im `  A ) ) ) ) )
6057, 59eqtrd 2114 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( (
u  +  ( _i  x.  v ) )  -  A )  =  ( ( u  -  ( Re `  A ) )  +  ( ( _i  x.  v )  -  ( _i  x.  ( Im `  A ) ) ) ) )
6160fveq2d 5213 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( abs `  ( ( u  +  ( _i  x.  v
) )  -  A
) )  =  ( abs `  ( ( u  -  ( Re
`  A ) )  +  ( ( _i  x.  v )  -  ( _i  x.  (
Im `  A )
) ) ) ) )
6219, 58subcld 7486 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( (
_i  x.  v )  -  ( _i  x.  ( Im `  A ) ) )  e.  CC )
6346, 62abstrid 10220 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( abs `  ( ( u  -  ( Re `  A ) )  +  ( ( _i  x.  v )  -  ( _i  x.  ( Im `  A ) ) ) ) )  <_  ( ( abs `  ( u  -  (
Re `  A )
) )  +  ( abs `  ( ( _i  x.  v )  -  ( _i  x.  ( Im `  A ) ) ) ) ) )
6461, 63eqbrtrd 3813 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( abs `  ( ( u  +  ( _i  x.  v
) )  -  A
) )  <_  (
( abs `  (
u  -  ( Re
`  A ) ) )  +  ( abs `  ( ( _i  x.  v )  -  (
_i  x.  ( Im `  A ) ) ) ) ) )
6516, 50absmuld 10218 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( abs `  ( _i  x.  (
v  -  ( Im
`  A ) ) ) )  =  ( ( abs `  _i )  x.  ( abs `  ( v  -  (
Im `  A )
) ) ) )
6616, 18, 49subdid 7585 . . . . . . . . 9  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( _i  x.  ( v  -  (
Im `  A )
) )  =  ( ( _i  x.  v
)  -  ( _i  x.  ( Im `  A ) ) ) )
6766fveq2d 5213 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( abs `  ( _i  x.  (
v  -  ( Im
`  A ) ) ) )  =  ( abs `  ( ( _i  x.  v )  -  ( _i  x.  ( Im `  A ) ) ) ) )
68 absi 10083 . . . . . . . . . 10  |-  ( abs `  _i )  =  1
6968oveq1i 5553 . . . . . . . . 9  |-  ( ( abs `  _i )  x.  ( abs `  (
v  -  ( Im
`  A ) ) ) )  =  ( 1  x.  ( abs `  ( v  -  (
Im `  A )
) ) )
7051recnd 7209 . . . . . . . . . 10  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( abs `  ( v  -  (
Im `  A )
) )  e.  CC )
7170mulid2d 7199 . . . . . . . . 9  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( 1  x.  ( abs `  (
v  -  ( Im
`  A ) ) ) )  =  ( abs `  ( v  -  ( Im `  A ) ) ) )
7269, 71syl5eq 2126 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( ( abs `  _i )  x.  ( abs `  (
v  -  ( Im
`  A ) ) ) )  =  ( abs `  ( v  -  ( Im `  A ) ) ) )
7365, 67, 723eqtr3d 2122 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( abs `  ( ( _i  x.  v )  -  (
_i  x.  ( Im `  A ) ) ) )  =  ( abs `  ( v  -  (
Im `  A )
) ) )
7473oveq2d 5559 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( ( abs `  ( u  -  ( Re `  A ) ) )  +  ( abs `  ( ( _i  x.  v )  -  ( _i  x.  ( Im `  A ) ) ) ) )  =  ( ( abs `  ( u  -  (
Re `  A )
) )  +  ( abs `  ( v  -  ( Im `  A ) ) ) ) )
7564, 74breqtrd 3817 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( abs `  ( ( u  +  ( _i  x.  v
) )  -  A
) )  <_  (
( abs `  (
u  -  ( Re
`  A ) ) )  +  ( abs `  ( v  -  (
Im `  A )
) ) ) )
76 simplrr 503 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( abs `  ( u  -  (
Re `  A )
) )  <  ( B  /  2 ) )
77 simprr 499 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) )
7847, 51, 54, 76, 77lt2halvesd 8345 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( ( abs `  ( u  -  ( Re `  A ) ) )  +  ( abs `  ( v  -  ( Im `  A ) ) ) )  <  B )
7943, 52, 54, 75, 78lelttrd 7301 . . . 4  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( abs `  ( ( u  +  ( _i  x.  v
) )  -  A
) )  <  B
)
80 oveq1 5550 . . . . . . 7  |-  ( x  =  ( u  +  ( _i  x.  v
) )  ->  (
x  -  A )  =  ( ( u  +  ( _i  x.  v ) )  -  A ) )
8180fveq2d 5213 . . . . . 6  |-  ( x  =  ( u  +  ( _i  x.  v
) )  ->  ( abs `  ( x  -  A ) )  =  ( abs `  (
( u  +  ( _i  x.  v ) )  -  A ) ) )
8281breq1d 3803 . . . . 5  |-  ( x  =  ( u  +  ( _i  x.  v
) )  ->  (
( abs `  (
x  -  A ) )  <  B  <->  ( abs `  ( ( u  +  ( _i  x.  v
) )  -  A
) )  <  B
) )
8382rspcev 2702 . . . 4  |-  ( ( ( u  +  ( _i  x.  v ) )  e.  Q  /\  ( abs `  ( ( u  +  ( _i  x.  v ) )  -  A ) )  <  B )  ->  E. x  e.  Q  ( abs `  ( x  -  A ) )  <  B )
8440, 79, 83syl2anc 403 . . 3  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  E. x  e.  Q  ( abs `  ( x  -  A
) )  <  B
)
8511, 84rexlimddv 2482 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  ( u  e.  QQ  /\  ( abs `  (
u  -  ( Re
`  A ) ) )  <  ( B  /  2 ) ) )  ->  E. x  e.  Q  ( abs `  ( x  -  A
) )  <  B
)
866, 85rexlimddv 2482 1  |-  ( ( A  e.  CC  /\  B  e.  RR+ )  ->  E. x  e.  Q  ( abs `  ( x  -  A ) )  <  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1285    e. wcel 1434   E.wrex 2350   {crab 2353   class class class wbr 3793   ` cfv 4932  (class class class)co 5543   CCcc 7041   RRcr 7042   1c1 7044   _ici 7045    + caddc 7046    x. cmul 7048    < clt 7215    <_ cle 7216    - cmin 7346    / cdiv 7827   2c2 8156   QQcq 8785   RR+crp 8815   Recre 9865   Imcim 9866   abscabs 10021
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-coll 3901  ax-sep 3904  ax-nul 3912  ax-pow 3956  ax-pr 3972  ax-un 4196  ax-setind 4288  ax-iinf 4337  ax-cnex 7129  ax-resscn 7130  ax-1cn 7131  ax-1re 7132  ax-icn 7133  ax-addcl 7134  ax-addrcl 7135  ax-mulcl 7136  ax-mulrcl 7137  ax-addcom 7138  ax-mulcom 7139  ax-addass 7140  ax-mulass 7141  ax-distr 7142  ax-i2m1 7143  ax-0lt1 7144  ax-1rid 7145  ax-0id 7146  ax-rnegex 7147  ax-precex 7148  ax-cnre 7149  ax-pre-ltirr 7150  ax-pre-ltwlin 7151  ax-pre-lttrn 7152  ax-pre-apti 7153  ax-pre-ltadd 7154  ax-pre-mulgt0 7155  ax-pre-mulext 7156  ax-arch 7157  ax-caucvg 7158
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ne 2247  df-nel 2341  df-ral 2354  df-rex 2355  df-reu 2356  df-rmo 2357  df-rab 2358  df-v 2604  df-sbc 2817  df-csb 2910  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-nul 3259  df-if 3360  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-uni 3610  df-int 3645  df-iun 3688  df-br 3794  df-opab 3848  df-mpt 3849  df-tr 3884  df-id 4056  df-po 4059  df-iso 4060  df-iord 4129  df-on 4131  df-ilim 4132  df-suc 4134  df-iom 4340  df-xp 4377  df-rel 4378  df-cnv 4379  df-co 4380  df-dm 4381  df-rn 4382  df-res 4383  df-ima 4384  df-iota 4897  df-fun 4934  df-fn 4935  df-f 4936  df-f1 4937  df-fo 4938  df-f1o 4939  df-fv 4940  df-riota 5499  df-ov 5546  df-oprab 5547  df-mpt2 5548  df-1st 5798  df-2nd 5799  df-recs 5954  df-frec 6040  df-pnf 7217  df-mnf 7218  df-xr 7219  df-ltxr 7220  df-le 7221  df-sub 7348  df-neg 7349  df-reap 7742  df-ap 7749  df-div 7828  df-inn 8107  df-2 8165  df-3 8166  df-4 8167  df-n0 8356  df-z 8433  df-uz 8701  df-q 8786  df-rp 8816  df-iseq 9522  df-iexp 9573  df-cj 9867  df-re 9868  df-im 9869  df-rsqrt 10022  df-abs 10023
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator