![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > qliftval | Unicode version |
Description: The value of the function
![]() |
Ref | Expression |
---|---|
qlift.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
qlift.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
qlift.3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
qlift.4 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
qliftval.4 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
qliftval.6 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
qliftval |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qlift.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | qlift.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | qlift.3 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | qlift.4 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 1, 2, 3, 4 | qliftlem 6243 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | eceq1 6200 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
7 | qliftval.4 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
8 | qliftval.6 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
9 | 1, 5, 2, 6, 7, 8 | fliftval 5465 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 ax-sep 3898 ax-pow 3950 ax-pr 3966 ax-un 4190 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-nf 1391 df-sb 1687 df-eu 1945 df-mo 1946 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-ral 2354 df-rex 2355 df-v 2604 df-sbc 2817 df-un 2978 df-in 2980 df-ss 2987 df-pw 3386 df-sn 3406 df-pr 3407 df-op 3409 df-uni 3604 df-br 3788 df-opab 3842 df-mpt 3843 df-id 4050 df-xp 4371 df-rel 4372 df-cnv 4373 df-co 4374 df-dm 4375 df-rn 4376 df-res 4377 df-ima 4378 df-iota 4891 df-fun 4928 df-fv 4934 df-er 6165 df-ec 6167 df-qs 6171 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |