ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qmulcl Unicode version

Theorem qmulcl 8803
Description: Closure of multiplication of rationals. (Contributed by NM, 1-Aug-2004.)
Assertion
Ref Expression
qmulcl  |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( A  x.  B
)  e.  QQ )

Proof of Theorem qmulcl
Dummy variables  x  y  z  w  v  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elq 8788 . 2  |-  ( A  e.  QQ  <->  E. x  e.  ZZ  E. y  e.  NN  A  =  ( x  /  y ) )
2 elq 8788 . 2  |-  ( B  e.  QQ  <->  E. z  e.  ZZ  E. w  e.  NN  B  =  ( z  /  w ) )
3 zmulcl 8485 . . . . . . . . . . 11  |-  ( ( x  e.  ZZ  /\  z  e.  ZZ )  ->  ( x  x.  z
)  e.  ZZ )
4 nnmulcl 8127 . . . . . . . . . . 11  |-  ( ( y  e.  NN  /\  w  e.  NN )  ->  ( y  x.  w
)  e.  NN )
53, 4anim12i 331 . . . . . . . . . 10  |-  ( ( ( x  e.  ZZ  /\  z  e.  ZZ )  /\  ( y  e.  NN  /\  w  e.  NN ) )  -> 
( ( x  x.  z )  e.  ZZ  /\  ( y  x.  w
)  e.  NN ) )
65an4s 553 . . . . . . . . 9  |-  ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  -> 
( ( x  x.  z )  e.  ZZ  /\  ( y  x.  w
)  e.  NN ) )
76adantr 270 . . . . . . . 8  |-  ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  (
z  e.  ZZ  /\  w  e.  NN )
)  /\  ( A  =  ( x  / 
y )  /\  B  =  ( z  /  w ) ) )  ->  ( ( x  x.  z )  e.  ZZ  /\  ( y  x.  w )  e.  NN ) )
8 oveq12 5552 . . . . . . . . 9  |-  ( ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) )  -> 
( A  x.  B
)  =  ( ( x  /  y )  x.  ( z  /  w ) ) )
9 zcn 8437 . . . . . . . . . . . 12  |-  ( x  e.  ZZ  ->  x  e.  CC )
10 zcn 8437 . . . . . . . . . . . 12  |-  ( z  e.  ZZ  ->  z  e.  CC )
119, 10anim12i 331 . . . . . . . . . . 11  |-  ( ( x  e.  ZZ  /\  z  e.  ZZ )  ->  ( x  e.  CC  /\  z  e.  CC ) )
1211ad2ant2r 493 . . . . . . . . . 10  |-  ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  -> 
( x  e.  CC  /\  z  e.  CC ) )
13 nncn 8114 . . . . . . . . . . . . 13  |-  ( y  e.  NN  ->  y  e.  CC )
14 nnap0 8135 . . . . . . . . . . . . 13  |-  ( y  e.  NN  ->  y #  0 )
1513, 14jca 300 . . . . . . . . . . . 12  |-  ( y  e.  NN  ->  (
y  e.  CC  /\  y #  0 ) )
16 nncn 8114 . . . . . . . . . . . . 13  |-  ( w  e.  NN  ->  w  e.  CC )
17 nnap0 8135 . . . . . . . . . . . . 13  |-  ( w  e.  NN  ->  w #  0 )
1816, 17jca 300 . . . . . . . . . . . 12  |-  ( w  e.  NN  ->  (
w  e.  CC  /\  w #  0 ) )
1915, 18anim12i 331 . . . . . . . . . . 11  |-  ( ( y  e.  NN  /\  w  e.  NN )  ->  ( ( y  e.  CC  /\  y #  0 )  /\  ( w  e.  CC  /\  w #  0 ) ) )
2019ad2ant2l 492 . . . . . . . . . 10  |-  ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  -> 
( ( y  e.  CC  /\  y #  0 )  /\  ( w  e.  CC  /\  w #  0 ) ) )
21 divmuldivap 7867 . . . . . . . . . 10  |-  ( ( ( x  e.  CC  /\  z  e.  CC )  /\  ( ( y  e.  CC  /\  y #  0 )  /\  (
w  e.  CC  /\  w #  0 ) ) )  ->  ( ( x  /  y )  x.  ( z  /  w
) )  =  ( ( x  x.  z
)  /  ( y  x.  w ) ) )
2212, 20, 21syl2anc 403 . . . . . . . . 9  |-  ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  -> 
( ( x  / 
y )  x.  (
z  /  w ) )  =  ( ( x  x.  z )  /  ( y  x.  w ) ) )
238, 22sylan9eqr 2136 . . . . . . . 8  |-  ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  (
z  e.  ZZ  /\  w  e.  NN )
)  /\  ( A  =  ( x  / 
y )  /\  B  =  ( z  /  w ) ) )  ->  ( A  x.  B )  =  ( ( x  x.  z
)  /  ( y  x.  w ) ) )
24 rspceov 5578 . . . . . . . . . 10  |-  ( ( ( x  x.  z
)  e.  ZZ  /\  ( y  x.  w
)  e.  NN  /\  ( A  x.  B
)  =  ( ( x  x.  z )  /  ( y  x.  w ) ) )  ->  E. v  e.  ZZ  E. u  e.  NN  ( A  x.  B )  =  ( v  /  u ) )
25243expa 1139 . . . . . . . . 9  |-  ( ( ( ( x  x.  z )  e.  ZZ  /\  ( y  x.  w
)  e.  NN )  /\  ( A  x.  B )  =  ( ( x  x.  z
)  /  ( y  x.  w ) ) )  ->  E. v  e.  ZZ  E. u  e.  NN  ( A  x.  B )  =  ( v  /  u ) )
26 elq 8788 . . . . . . . . 9  |-  ( ( A  x.  B )  e.  QQ  <->  E. v  e.  ZZ  E. u  e.  NN  ( A  x.  B )  =  ( v  /  u ) )
2725, 26sylibr 132 . . . . . . . 8  |-  ( ( ( ( x  x.  z )  e.  ZZ  /\  ( y  x.  w
)  e.  NN )  /\  ( A  x.  B )  =  ( ( x  x.  z
)  /  ( y  x.  w ) ) )  ->  ( A  x.  B )  e.  QQ )
287, 23, 27syl2anc 403 . . . . . . 7  |-  ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  (
z  e.  ZZ  /\  w  e.  NN )
)  /\  ( A  =  ( x  / 
y )  /\  B  =  ( z  /  w ) ) )  ->  ( A  x.  B )  e.  QQ )
2928an4s 553 . . . . . 6  |-  ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  A  =  ( x  / 
y ) )  /\  ( ( z  e.  ZZ  /\  w  e.  NN )  /\  B  =  ( z  /  w ) ) )  ->  ( A  x.  B )  e.  QQ )
3029exp43 364 . . . . 5  |-  ( ( x  e.  ZZ  /\  y  e.  NN )  ->  ( A  =  ( x  /  y )  ->  ( ( z  e.  ZZ  /\  w  e.  NN )  ->  ( B  =  ( z  /  w )  ->  ( A  x.  B )  e.  QQ ) ) ) )
3130rexlimivv 2483 . . . 4  |-  ( E. x  e.  ZZ  E. y  e.  NN  A  =  ( x  / 
y )  ->  (
( z  e.  ZZ  /\  w  e.  NN )  ->  ( B  =  ( z  /  w
)  ->  ( A  x.  B )  e.  QQ ) ) )
3231rexlimdvv 2484 . . 3  |-  ( E. x  e.  ZZ  E. y  e.  NN  A  =  ( x  / 
y )  ->  ( E. z  e.  ZZ  E. w  e.  NN  B  =  ( z  /  w )  ->  ( A  x.  B )  e.  QQ ) )
3332imp 122 . 2  |-  ( ( E. x  e.  ZZ  E. y  e.  NN  A  =  ( x  / 
y )  /\  E. z  e.  ZZ  E. w  e.  NN  B  =  ( z  /  w ) )  ->  ( A  x.  B )  e.  QQ )
341, 2, 33syl2anb 285 1  |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( A  x.  B
)  e.  QQ )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1285    e. wcel 1434   E.wrex 2350   class class class wbr 3793  (class class class)co 5543   CCcc 7041   0cc0 7043    x. cmul 7048   # cap 7748    / cdiv 7827   NNcn 8106   ZZcz 8432   QQcq 8785
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3904  ax-pow 3956  ax-pr 3972  ax-un 4196  ax-setind 4288  ax-cnex 7129  ax-resscn 7130  ax-1cn 7131  ax-1re 7132  ax-icn 7133  ax-addcl 7134  ax-addrcl 7135  ax-mulcl 7136  ax-mulrcl 7137  ax-addcom 7138  ax-mulcom 7139  ax-addass 7140  ax-mulass 7141  ax-distr 7142  ax-i2m1 7143  ax-0lt1 7144  ax-1rid 7145  ax-0id 7146  ax-rnegex 7147  ax-precex 7148  ax-cnre 7149  ax-pre-ltirr 7150  ax-pre-ltwlin 7151  ax-pre-lttrn 7152  ax-pre-apti 7153  ax-pre-ltadd 7154  ax-pre-mulgt0 7155  ax-pre-mulext 7156
This theorem depends on definitions:  df-bi 115  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ne 2247  df-nel 2341  df-ral 2354  df-rex 2355  df-reu 2356  df-rmo 2357  df-rab 2358  df-v 2604  df-sbc 2817  df-csb 2910  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-uni 3610  df-int 3645  df-iun 3688  df-br 3794  df-opab 3848  df-mpt 3849  df-id 4056  df-po 4059  df-iso 4060  df-xp 4377  df-rel 4378  df-cnv 4379  df-co 4380  df-dm 4381  df-rn 4382  df-res 4383  df-ima 4384  df-iota 4897  df-fun 4934  df-fn 4935  df-f 4936  df-fv 4940  df-riota 5499  df-ov 5546  df-oprab 5547  df-mpt2 5548  df-1st 5798  df-2nd 5799  df-pnf 7217  df-mnf 7218  df-xr 7219  df-ltxr 7220  df-le 7221  df-sub 7348  df-neg 7349  df-reap 7742  df-ap 7749  df-div 7828  df-inn 8107  df-n0 8356  df-z 8433  df-q 8786
This theorem is referenced by:  qdivcl  8809  flqmulnn0  9381  modqcl  9408  mulqmod0  9412  modqmulnn  9424  modqcyc  9441  mulp1mod1  9447  modqmul1  9459  q2txmodxeq0  9466  modqaddmulmod  9473  modqdi  9474  modqsubdir  9475  qexpcl  9589  qexpclz  9594  qsqcl  9644  dvdslelemd  10388
  Copyright terms: Public domain W3C validator