ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qreccl Unicode version

Theorem qreccl 8797
Description: Closure of reciprocal of rationals. (Contributed by NM, 3-Aug-2004.)
Assertion
Ref Expression
qreccl  |-  ( ( A  e.  QQ  /\  A  =/=  0 )  -> 
( 1  /  A
)  e.  QQ )

Proof of Theorem qreccl
Dummy variables  x  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-1cn 7120 . . . . . 6  |-  1  e.  CC
2 1ap0 7746 . . . . . 6  |-  1 #  0
31, 2div0api 7890 . . . . 5  |-  ( 0  /  1 )  =  0
4 0z 8432 . . . . . 6  |-  0  e.  ZZ
5 1nn 8106 . . . . . 6  |-  1  e.  NN
6 znq 8779 . . . . . 6  |-  ( ( 0  e.  ZZ  /\  1  e.  NN )  ->  ( 0  /  1
)  e.  QQ )
74, 5, 6mp2an 417 . . . . 5  |-  ( 0  /  1 )  e.  QQ
83, 7eqeltrri 2153 . . . 4  |-  0  e.  QQ
9 qapne 8794 . . . 4  |-  ( ( A  e.  QQ  /\  0  e.  QQ )  ->  ( A #  0  <->  A  =/=  0 ) )
108, 9mpan2 416 . . 3  |-  ( A  e.  QQ  ->  ( A #  0  <->  A  =/=  0
) )
1110biimpar 291 . 2  |-  ( ( A  e.  QQ  /\  A  =/=  0 )  ->  A #  0 )
12 elq 8777 . . . 4  |-  ( A  e.  QQ  <->  E. x  e.  ZZ  E. y  e.  NN  A  =  ( x  /  y ) )
13 nnne0 8123 . . . . . . . 8  |-  ( y  e.  NN  ->  y  =/=  0 )
1413ancli 316 . . . . . . 7  |-  ( y  e.  NN  ->  (
y  e.  NN  /\  y  =/=  0 ) )
15 nnz 8440 . . . . . . . . . . . . . . . 16  |-  ( y  e.  NN  ->  y  e.  ZZ )
16 zapne 8492 . . . . . . . . . . . . . . . 16  |-  ( ( y  e.  ZZ  /\  0  e.  ZZ )  ->  ( y #  0  <->  y  =/=  0 ) )
1715, 4, 16sylancl 404 . . . . . . . . . . . . . . 15  |-  ( y  e.  NN  ->  (
y #  0  <->  y  =/=  0 ) )
1817adantl 271 . . . . . . . . . . . . . 14  |-  ( ( x  e.  ZZ  /\  y  e.  NN )  ->  ( y #  0  <->  y  =/=  0 ) )
1918pm5.32i 442 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  y #  0 )  <-> 
( ( x  e.  ZZ  /\  y  e.  NN )  /\  y  =/=  0 ) )
2019anbi1i 446 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  y #  0 )  /\  A  =  ( x  / 
y ) )  <->  ( (
( x  e.  ZZ  /\  y  e.  NN )  /\  y  =/=  0
)  /\  A  =  ( x  /  y
) ) )
21 breq1 3790 . . . . . . . . . . . . 13  |-  ( A  =  ( x  / 
y )  ->  ( A #  0  <->  ( x  / 
y ) #  0 ) )
22 zcn 8426 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ZZ  ->  x  e.  CC )
23 nncn 8103 . . . . . . . . . . . . . . . 16  |-  ( y  e.  NN  ->  y  e.  CC )
2422, 23anim12i 331 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ZZ  /\  y  e.  NN )  ->  ( x  e.  CC  /\  y  e.  CC ) )
25 divap0b 7827 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  CC  /\  y  e.  CC  /\  y #  0 )  ->  (
x #  0  <->  ( x  /  y ) #  0 ) )
26253expa 1139 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  CC  /\  y  e.  CC )  /\  y #  0 )  ->  ( x #  0  <-> 
( x  /  y
) #  0 ) )
2724, 26sylan 277 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  y #  0 )  ->  ( x #  0  <-> 
( x  /  y
) #  0 ) )
2827bicomd 139 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  y #  0 )  ->  ( ( x  /  y ) #  0  <-> 
x #  0 ) )
2921, 28sylan9bbr 451 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  y #  0 )  /\  A  =  ( x  / 
y ) )  -> 
( A #  0  <->  x #  0 ) )
3020, 29sylbir 133 . . . . . . . . . . 11  |-  ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  y  =/=  0 )  /\  A  =  ( x  / 
y ) )  -> 
( A #  0  <->  x #  0 ) )
31 simplll 500 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  y  =/=  0 )  /\  A  =  ( x  / 
y ) )  ->  x  e.  ZZ )
32 zapne 8492 . . . . . . . . . . . 12  |-  ( ( x  e.  ZZ  /\  0  e.  ZZ )  ->  ( x #  0  <->  x  =/=  0 ) )
3331, 4, 32sylancl 404 . . . . . . . . . . 11  |-  ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  y  =/=  0 )  /\  A  =  ( x  / 
y ) )  -> 
( x #  0  <->  x  =/=  0 ) )
3430, 33bitrd 186 . . . . . . . . . 10  |-  ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  y  =/=  0 )  /\  A  =  ( x  / 
y ) )  -> 
( A #  0  <->  x  =/=  0 ) )
35 zmulcl 8474 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( x  x.  y
)  e.  ZZ )
3615, 35sylan2 280 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  ZZ  /\  y  e.  NN )  ->  ( x  x.  y
)  e.  ZZ )
3736adantr 270 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  x  =/=  0
)  ->  ( x  x.  y )  e.  ZZ )
38 msqznn 8517 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  ZZ  /\  x  =/=  0 )  -> 
( x  x.  x
)  e.  NN )
3938adantlr 461 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  x  =/=  0
)  ->  ( x  x.  x )  e.  NN )
4037, 39jca 300 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  x  =/=  0
)  ->  ( (
x  x.  y )  e.  ZZ  /\  (
x  x.  x )  e.  NN ) )
4140adantlr 461 . . . . . . . . . . . . 13  |-  ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  y  =/=  0 )  /\  x  =/=  0 )  ->  (
( x  x.  y
)  e.  ZZ  /\  ( x  x.  x
)  e.  NN ) )
4241adantlr 461 . . . . . . . . . . . 12  |-  ( ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  y  =/=  0 )  /\  A  =  ( x  / 
y ) )  /\  x  =/=  0 )  -> 
( ( x  x.  y )  e.  ZZ  /\  ( x  x.  x
)  e.  NN ) )
4320anbi1i 446 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  y #  0 )  /\  A  =  ( x  / 
y ) )  /\  x #  0 )  <->  ( (
( ( x  e.  ZZ  /\  y  e.  NN )  /\  y  =/=  0 )  /\  A  =  ( x  / 
y ) )  /\  x #  0 ) )
4433pm5.32i 442 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  y  =/=  0 )  /\  A  =  ( x  / 
y ) )  /\  x #  0 )  <->  ( (
( ( x  e.  ZZ  /\  y  e.  NN )  /\  y  =/=  0 )  /\  A  =  ( x  / 
y ) )  /\  x  =/=  0 ) )
4543, 44bitri 182 . . . . . . . . . . . . 13  |-  ( ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  y #  0 )  /\  A  =  ( x  / 
y ) )  /\  x #  0 )  <->  ( (
( ( x  e.  ZZ  /\  y  e.  NN )  /\  y  =/=  0 )  /\  A  =  ( x  / 
y ) )  /\  x  =/=  0 ) )
46 oveq2 5545 . . . . . . . . . . . . . . 15  |-  ( A  =  ( x  / 
y )  ->  (
1  /  A )  =  ( 1  / 
( x  /  y
) ) )
47 dividap 7845 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( x  e.  CC  /\  x #  0 )  ->  (
x  /  x )  =  1 )
4847adantr 270 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( x  e.  CC  /\  x #  0 )  /\  ( y  e.  CC  /\  y #  0 ) )  ->  ( x  /  x )  =  1 )
4948oveq1d 5552 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( x  e.  CC  /\  x #  0 )  /\  ( y  e.  CC  /\  y #  0 ) )  ->  ( ( x  /  x )  / 
( x  /  y
) )  =  ( 1  /  ( x  /  y ) ) )
50 simpll 496 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( x  e.  CC  /\  x #  0 )  /\  ( y  e.  CC  /\  y #  0 ) )  ->  x  e.  CC )
51 simpl 107 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( x  e.  CC  /\  x #  0 )  /\  ( y  e.  CC  /\  y #  0 ) )  ->  ( x  e.  CC  /\  x #  0 ) )
52 simpr 108 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( x  e.  CC  /\  x #  0 )  /\  ( y  e.  CC  /\  y #  0 ) )  ->  ( y  e.  CC  /\  y #  0 ) )
53 divdivdivap 7857 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( x  e.  CC  /\  ( x  e.  CC  /\  x #  0 ) )  /\  ( ( x  e.  CC  /\  x #  0 )  /\  (
y  e.  CC  /\  y #  0 ) ) )  ->  ( ( x  /  x )  / 
( x  /  y
) )  =  ( ( x  x.  y
)  /  ( x  x.  x ) ) )
5450, 51, 51, 52, 53syl22anc 1171 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( x  e.  CC  /\  x #  0 )  /\  ( y  e.  CC  /\  y #  0 ) )  ->  ( ( x  /  x )  / 
( x  /  y
) )  =  ( ( x  x.  y
)  /  ( x  x.  x ) ) )
5549, 54eqtr3d 2116 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( x  e.  CC  /\  x #  0 )  /\  ( y  e.  CC  /\  y #  0 ) )  ->  ( 1  / 
( x  /  y
) )  =  ( ( x  x.  y
)  /  ( x  x.  x ) ) )
5655an4s 553 . . . . . . . . . . . . . . . . 17  |-  ( ( ( x  e.  CC  /\  y  e.  CC )  /\  ( x #  0  /\  y #  0 ) )  ->  ( 1  /  ( x  / 
y ) )  =  ( ( x  x.  y )  /  (
x  x.  x ) ) )
5724, 56sylan 277 . . . . . . . . . . . . . . . 16  |-  ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  ( x #  0  /\  y #  0 ) )  ->  ( 1  /  ( x  / 
y ) )  =  ( ( x  x.  y )  /  (
x  x.  x ) ) )
5857anass1rs 536 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  y #  0 )  /\  x #  0 )  ->  (
1  /  ( x  /  y ) )  =  ( ( x  x.  y )  / 
( x  x.  x
) ) )
5946, 58sylan9eqr 2136 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  y #  0 )  /\  x #  0 )  /\  A  =  ( x  / 
y ) )  -> 
( 1  /  A
)  =  ( ( x  x.  y )  /  ( x  x.  x ) ) )
6059an32s 533 . . . . . . . . . . . . 13  |-  ( ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  y #  0 )  /\  A  =  ( x  / 
y ) )  /\  x #  0 )  ->  (
1  /  A )  =  ( ( x  x.  y )  / 
( x  x.  x
) ) )
6145, 60sylbir 133 . . . . . . . . . . . 12  |-  ( ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  y  =/=  0 )  /\  A  =  ( x  / 
y ) )  /\  x  =/=  0 )  -> 
( 1  /  A
)  =  ( ( x  x.  y )  /  ( x  x.  x ) ) )
6242, 61jca 300 . . . . . . . . . . 11  |-  ( ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  y  =/=  0 )  /\  A  =  ( x  / 
y ) )  /\  x  =/=  0 )  -> 
( ( ( x  x.  y )  e.  ZZ  /\  ( x  x.  x )  e.  NN )  /\  (
1  /  A )  =  ( ( x  x.  y )  / 
( x  x.  x
) ) ) )
6362ex 113 . . . . . . . . . 10  |-  ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  y  =/=  0 )  /\  A  =  ( x  / 
y ) )  -> 
( x  =/=  0  ->  ( ( ( x  x.  y )  e.  ZZ  /\  ( x  x.  x )  e.  NN )  /\  (
1  /  A )  =  ( ( x  x.  y )  / 
( x  x.  x
) ) ) ) )
6434, 63sylbid 148 . . . . . . . . 9  |-  ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  y  =/=  0 )  /\  A  =  ( x  / 
y ) )  -> 
( A #  0  -> 
( ( ( x  x.  y )  e.  ZZ  /\  ( x  x.  x )  e.  NN )  /\  (
1  /  A )  =  ( ( x  x.  y )  / 
( x  x.  x
) ) ) ) )
6564ex 113 . . . . . . . 8  |-  ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  y  =/=  0
)  ->  ( A  =  ( x  / 
y )  ->  ( A #  0  ->  ( ( ( x  x.  y
)  e.  ZZ  /\  ( x  x.  x
)  e.  NN )  /\  ( 1  /  A )  =  ( ( x  x.  y
)  /  ( x  x.  x ) ) ) ) ) )
6665anasss 391 . . . . . . 7  |-  ( ( x  e.  ZZ  /\  ( y  e.  NN  /\  y  =/=  0 ) )  ->  ( A  =  ( x  / 
y )  ->  ( A #  0  ->  ( ( ( x  x.  y
)  e.  ZZ  /\  ( x  x.  x
)  e.  NN )  /\  ( 1  /  A )  =  ( ( x  x.  y
)  /  ( x  x.  x ) ) ) ) ) )
6714, 66sylan2 280 . . . . . 6  |-  ( ( x  e.  ZZ  /\  y  e.  NN )  ->  ( A  =  ( x  /  y )  ->  ( A #  0  ->  ( ( ( x  x.  y )  e.  ZZ  /\  (
x  x.  x )  e.  NN )  /\  ( 1  /  A
)  =  ( ( x  x.  y )  /  ( x  x.  x ) ) ) ) ) )
68 rspceov 5572 . . . . . . . 8  |-  ( ( ( x  x.  y
)  e.  ZZ  /\  ( x  x.  x
)  e.  NN  /\  ( 1  /  A
)  =  ( ( x  x.  y )  /  ( x  x.  x ) ) )  ->  E. z  e.  ZZ  E. w  e.  NN  (
1  /  A )  =  ( z  /  w ) )
69683expa 1139 . . . . . . 7  |-  ( ( ( ( x  x.  y )  e.  ZZ  /\  ( x  x.  x
)  e.  NN )  /\  ( 1  /  A )  =  ( ( x  x.  y
)  /  ( x  x.  x ) ) )  ->  E. z  e.  ZZ  E. w  e.  NN  ( 1  /  A )  =  ( z  /  w ) )
70 elq 8777 . . . . . . 7  |-  ( ( 1  /  A )  e.  QQ  <->  E. z  e.  ZZ  E. w  e.  NN  ( 1  /  A )  =  ( z  /  w ) )
7169, 70sylibr 132 . . . . . 6  |-  ( ( ( ( x  x.  y )  e.  ZZ  /\  ( x  x.  x
)  e.  NN )  /\  ( 1  /  A )  =  ( ( x  x.  y
)  /  ( x  x.  x ) ) )  ->  ( 1  /  A )  e.  QQ )
7267, 71syl8 70 . . . . 5  |-  ( ( x  e.  ZZ  /\  y  e.  NN )  ->  ( A  =  ( x  /  y )  ->  ( A #  0  ->  ( 1  /  A )  e.  QQ ) ) )
7372rexlimivv 2483 . . . 4  |-  ( E. x  e.  ZZ  E. y  e.  NN  A  =  ( x  / 
y )  ->  ( A #  0  ->  ( 1  /  A )  e.  QQ ) )
7412, 73sylbi 119 . . 3  |-  ( A  e.  QQ  ->  ( A #  0  ->  ( 1  /  A )  e.  QQ ) )
7574imp 122 . 2  |-  ( ( A  e.  QQ  /\  A #  0 )  ->  (
1  /  A )  e.  QQ )
7611, 75syldan 276 1  |-  ( ( A  e.  QQ  /\  A  =/=  0 )  -> 
( 1  /  A
)  e.  QQ )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1285    e. wcel 1434    =/= wne 2246   E.wrex 2350   class class class wbr 3787  (class class class)co 5537   CCcc 7030   0cc0 7032   1c1 7033    x. cmul 7037   # cap 7737    / cdiv 7816   NNcn 8095   ZZcz 8421   QQcq 8774
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3898  ax-pow 3950  ax-pr 3966  ax-un 4190  ax-setind 4282  ax-cnex 7118  ax-resscn 7119  ax-1cn 7120  ax-1re 7121  ax-icn 7122  ax-addcl 7123  ax-addrcl 7124  ax-mulcl 7125  ax-mulrcl 7126  ax-addcom 7127  ax-mulcom 7128  ax-addass 7129  ax-mulass 7130  ax-distr 7131  ax-i2m1 7132  ax-0lt1 7133  ax-1rid 7134  ax-0id 7135  ax-rnegex 7136  ax-precex 7137  ax-cnre 7138  ax-pre-ltirr 7139  ax-pre-ltwlin 7140  ax-pre-lttrn 7141  ax-pre-apti 7142  ax-pre-ltadd 7143  ax-pre-mulgt0 7144  ax-pre-mulext 7145
This theorem depends on definitions:  df-bi 115  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ne 2247  df-nel 2341  df-ral 2354  df-rex 2355  df-reu 2356  df-rmo 2357  df-rab 2358  df-v 2604  df-sbc 2817  df-csb 2910  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-pw 3386  df-sn 3406  df-pr 3407  df-op 3409  df-uni 3604  df-int 3639  df-iun 3682  df-br 3788  df-opab 3842  df-mpt 3843  df-id 4050  df-po 4053  df-iso 4054  df-xp 4371  df-rel 4372  df-cnv 4373  df-co 4374  df-dm 4375  df-rn 4376  df-res 4377  df-ima 4378  df-iota 4891  df-fun 4928  df-fn 4929  df-f 4930  df-fv 4934  df-riota 5493  df-ov 5540  df-oprab 5541  df-mpt2 5542  df-1st 5792  df-2nd 5793  df-pnf 7206  df-mnf 7207  df-xr 7208  df-ltxr 7209  df-le 7210  df-sub 7337  df-neg 7338  df-reap 7731  df-ap 7738  df-div 7817  df-inn 8096  df-n0 8345  df-z 8422  df-q 8775
This theorem is referenced by:  qdivcl  8798  qexpclz  9583
  Copyright terms: Public domain W3C validator